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Problem 1

If r,s, t are positive integers, how many positive divisors does 2r3s5t have?

Let a and b be integers with b ̸= 0. b is a divisor of a if b|a, or equivalently, a = bc for some integer c.

Any divisor of 2r3s5t must have the form 2a3b5c, where 0 ≤ a < r, 0 ≤ b < s and 0 ≤ c < t. We will prove

this by reductio. Suppose d cannot be expressed in the form 2a3b5c. We claim d is a divisor of 2r3s5t . Let

us express d as 2a3b5c ·q, where 2 ∤ q, 3 ∤ q, 5 ∤ q, and q > 1. Every integer d which cannot be expressed as

2a3b5c can be expressed as such due to the Fundamental Theorem of Arithmetic. Since d is a divisor of

2r3s5t , there exists an integer k such that dk = 2r3s5t =⇒ k ·2a3b5c ·q = 2r3s5t . Dividing both sides by

2a3b5c yields kq = 2r−a3s−b5t−c. The truth of this statement is equivalent to the truth of the statement

q|2r−a3s−b5t−c. Theorem 1.4 states that if a|bc and (a,b) = 1, then a|c. Consider q|(2)(2r−a−13s−b5t−c).

We know that (q,2) = 1 because the theoretically maximum possible value of (a,b) is min(a,b), or 2 in

this case, but we know 2 ∤ q. By Theorem 1.4, this means that q|2r−a−13s−b5t−c. We can rewrite this as

q|(2)(2r−a−23s−b5t−c). Using the same reasoning as above, from Theorem 1.4. and (q,2) = 1, it must

be true that q|2r−a−23s−b5t−c. We can repeat this process, exploiting Theorem 1.4. and the fact that

(q,2) = 1, (q,3) = 1, and (q,5) = 1 to continuously eliminate factors, until we end up finally at q|5. There

are four numbers which divide 5: ±1 and ±5. Since q > 1, q /∈ {−1,1}. Since 5 ∤ q, q /∈ {−5,5}. This is

a contradiction. Therefore, d must be expressible in the form 2a3b5c to be a divisor of 2r3s5t . □



Given this, we simply need to select all the possible combinations of values of a,b,c. This yields

(r+1)(s+1)(t+1) possibilities (the +1 to include the zeroth exponent). From the “uniqueness” guarantee

of the Fundamental Theorem of Arithmetic, there is no possibility of double-counting because the base of

each exponent is a prime number.

Problem 2

If p is prime and p is divide by 10, show that the remainder is one of 1,3,7,9.

Strictly speaking, this statement is false, as 2 is a prime number but its remainder when divide by 10 is

2. However, we will show the statement holds for p > 2 using a proof by contradiction. Suppose that there

exists some prime p such that the remainder when dividing by 10 is not in {1,3,7,9}. By the division

algorithm, this means that the remainder will be one of {0,2,4,5,6,8}. In the case that the remainder is in

the set {0,2,4,6,8}, p can be rewritten as 10k+2r for some integers r,k. For instance, if the remainder is

0, r = 0; if the remainder is 2, r = 1; if the remainder is 4, r = 2, and so on. Then, p can be rewritten as

2(5k+ r), which means that 2|p. However, by the definition of a prime number, the only numbers which

divide p are ±1 and ±p. For all p ̸= 2, this is a contradiction. In the case that the remainder is 5, p can be

rewritten as 10k+5 for some integer k. Then, p can be rewritten as 5(2k+1), which means 5|p. For all

p ̸= 5, this is a contradiction. Therefore, it must be the case that the remainder of a prime number p when

divided by 10 is either 1, 3, 7, or 9. □

Problem 3

What is [82023] ∈ Z9?

We can rewrite [82023] as a product of congruence classes: [8]⊗ [8]⊗ ...⊗ [8] = [8]2023. From Theorem

2.3., [a] = [c] iff a ≡n c. We know that 8 ≡9 −1; therefore, [8] = [−1]. As such, we can rewrite [8]2023

as [−1]2023, or alternatively as [(−1)2023]. (−1)2023 =−1, as (−1)k = 1 if 2|k and −1 if not. Therefore,

[82023] = [−1]. By Theorem 2.3. again, [−1] = [8]. As such, [82023] in Z9 is [8].

Problem 4

If a ∈ Z, prove that a2 is not congruent to 2 modulo 4 and or 3 modulo 4.

Per the division algorithm/theorem, every integer a can be written as 4n+ r, where n,r ∈ Z, 0 ≤ r < 4.

a2 is 16n2 +8nr+ r2. There are four values r can take on: 0, 1, 2, 3. If r = 0, the expression simplifies to

16n2, which is 0 modulo 4 because it can be rewritten as 4(4n2)+0. If r = 1, the expression simplifies to
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16n2 +8+1, which is 1 modulo 4 because it can be rewritten as 4(4n2 +2)+1. If r = 2, the expression

simplifies to 16n2 +16n+4, which is 0 modulo 4 because it can be rewritten as 4(4n2 +4n+1). Lastly,

if r = 3, the expression simplifies to 16n2 +24n+9, which is 1 modulo 4 because it can be rewritten as

4(4n2 +6n+2)+1. Therefore, the square of an integer will always be either 0 or 1 modulo 4. □

Problem 5

Prove that for any classes [a], [b] ∈ Zn, [a]⊕ [b] = [b]⊕ [a].

We know that [a]⊕ [b] = [a+b]. Addition between integers is commutative (i.e. a+b = b+a), so

therefore [a+b] = [b+a]. We can rewrite [b+a] as [b]⊕ [a]. Since this is a direct chain of equivalences,

we have that [a]⊕ [b] = [b]⊕ [a]. □

Problem 6

Find an element [a] in Z7 such that every nonzero element of Z7 is a power of [a].

There are six nonzero elements of Z7: [1], [2], [3], [4], [5], [6]. Let [a] = [3]. Then we have [a]2 = [2].

This is because [a]2 = [3]2 = [32] = [9] and 9 ≡7 2. Likewise, [a]3 = [6], [a]4 = [4], [a]5 = [5], [a]6 = [1].

Therefore, we have expressed every nonzero element of Z7 as a power of [3].
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