Worksheet 1

Andre Ye¹

¹University of Washington, MATH 402 ⁺Draft date October 8, 2023.

Problem 1

If r, s, t are positive integers, how many positive divisors does $2^r 3^s 5^t$ have?

Let *a* and *b* be integers with $b \neq 0$. *b* is a divisor of *a* if b|a, or equivalently, a = bc for some integer *c*. Any divisor of $2^r 3^s 5^t$ must have the form $2^a 3^b 5^c$, where $0 \le a < r$, $0 \le b < s$ and $0 \le c < t$. We will prove this by reductio. Suppose *d* cannot be expressed in the form $2^a 3^b 5^c$. We claim *d* is a divisor of $2^r 3^s 5^t$. Let us express *d* as $2^a 3^b 5^c \cdot q$, where $2 \nmid q$, $3 \nmid q$, $5 \nmid q$, and q > 1. Every integer *d* which cannot be expressed as $2^a 3^b 5^c$ can be expressed as such due to the Fundamental Theorem of Arithmetic. Since *d* is a divisor of $2^r 3^s 5^t$, there exists an integer *k* such that $dk = 2^r 3^s 5^t \implies k \cdot 2^a 3^b 5^c \cdot q = 2^r 3^s 5^t$. Dividing both sides by $2^a 3^b 5^c$ yields $kq = 2^{r-a} 3^{s-b} 5^{t-c}$. The truth of this statement is equivalent to the truth of the statement $q|2^{r-a} 3^{s-b} 5^{t-c}$. Theorem 1.4 states that if a|bc and (a,b) = 1, then a|c. Consider $q|(2)(2^{r-a-1} 3^{s-b} 5^{t-c})$. We know that (q,2) = 1 because the theoretically maximum possible value of (a,b) is min(a,b), or 2 in this case, but we know $2 \nmid q$. By Theorem 1.4, this means that $q|2^{r-a-1} 3^{s-b} 5^{t-c}$. We can rewrite this as $q|(2)(2^{r-a-2} 3^{s-b} 5^{t-c})$. Using the same reasoning as above, from Theorem 1.4. and (q,2) = 1, it must be true that $q|2^{r-a-2} 3^{s-b} 5^{t-c}$. We can repeat this process, exploiting Theorem 1.4. and the fact that (q,2) = 1, (q,3) = 1, and (q,5) = 1 to continuously eliminate factors, until we end up finally at q|5. There are four numbers which divide 5: ± 1 and ± 5 . Since $q > 1, q \notin \{-1,1\}$. Since $5 \nmid q, q \notin \{-5,5\}$. This is a contradiction. Therefore, *d* must be expressible in the form $2^a 3^b 5^c$ to be a divisor of $2^r 3^s 5^t$. \Box Given this, we simply need to select all the possible combinations of values of a, b, c. This yields (r+1)(s+1)(t+1) possibilities (the +1 to include the zeroth exponent). From the "uniqueness" guarantee of the Fundamental Theorem of Arithmetic, there is no possibility of double-counting because the base of each exponent is a prime number.

Problem 2

If p is prime and p is divide by 10, show that the remainder is one of 1,3,7,9.

Strictly speaking, this statement is false, as 2 is a prime number but its remainder when divide by 10 is 2. However, we will show the statement holds for p > 2 using a proof by contradiction. Suppose that there exists some prime p such that the remainder when dividing by 10 is *not* in {1,3,7,9}. By the division algorithm, this means that the remainder will be one of {0,2,4,5,6,8}. In the case that the remainder is in the set {0,2,4,6,8}, p can be rewritten as 10k + 2r for some integers r,k. For instance, if the remainder is 0, r = 0; if the remainder is 2, r = 1; if the remainder is 4, r = 2, and so on. Then, p can be rewritten as 2(5k + r), which means that 2|p. However, by the definition of a prime number, the only numbers which divide p are ± 1 and $\pm p$. For all $p \neq 2$, this is a contradiction. In the case that the remainder is 5, p can be rewritten as 10k + 5 for some integer k. Then, p can be rewritten as 5(2k + 1), which means 5|p. For all $p \neq 5$, this is a contradiction. Therefore, it must be the case that the remainder of a prime number p when divide by 10 is either 1, 3, 7, or 9. \Box

Problem 3

What is $[8^{2023}] \in \mathbb{Z}_9$?

We can rewrite $[8^{2023}]$ as a product of congruence classes: $[8] \otimes [8] \otimes ... \otimes [8] = [8]^{2023}$. From Theorem 2.3., [a] = [c] iff $a \equiv_n c$. We know that $8 \equiv_9 -1$; therefore, [8] = [-1]. As such, we can rewrite $[8]^{2023}$ as $[-1]^{2023}$, or alternatively as $[(-1)^{2023}]$. $(-1)^{2023} = -1$, as $(-1)^k = 1$ if 2|k and -1 if not. Therefore, $[8^{2023}] = [-1]$. By Theorem 2.3. again, [-1] = [8]. As such, $[8^{2023}]$ in \mathbb{Z}_9 is [8].

Problem 4

If $a \in \mathbb{Z}$, prove that a^2 is not congruent to 2 modulo 4 and or 3 modulo 4.

Per the division algorithm/theorem, every integer *a* can be written as 4n + r, where $n, r \in \mathbb{Z}$, $0 \le r < 4$. a^2 is $16n^2 + 8nr + r^2$. There are four values *r* can take on: 0, 1, 2, 3. If r = 0, the expression simplifies to $16n^2$, which is 0 modulo 4 because it can be rewritten as $4(4n^2) + 0$. If r = 1, the expression simplifies to $16n^2 + 8 + 1$, which is 1 modulo 4 because it can be rewritten as $4(4n^2 + 2) + 1$. If r = 2, the expression simplifies to $16n^2 + 16n + 4$, which is 0 modulo 4 because it can be rewritten as $4(4n^2 + 4n + 1)$. Lastly, if r = 3, the expression simplifies to $16n^2 + 24n + 9$, which is 1 modulo 4 because it can be rewritten as $4(4n^2 + 6n + 2) + 1$. Therefore, the square of an integer will always be either 0 or 1 modulo 4. \Box

Problem 5

Prove that for any classes $[a], [b] \in \mathbb{Z}_n$, $[a] \oplus [b] = [b] \oplus [a]$.

We know that $[a] \oplus [b] = [a+b]$. Addition between integers is commutative (i.e. a+b=b+a), so therefore [a+b] = [b+a]. We can rewrite [b+a] as $[b] \oplus [a]$. Since this is a direct chain of equivalences, we have that $[a] \oplus [b] = [b] \oplus [a]$. \Box

Problem 6

Find an element [a] in \mathbb{Z}_7 such that every nonzero element of \mathbb{Z}_7 is a power of [a].

There are six nonzero elements of \mathbb{Z}_7 : [1], [2], [3], [4], [5], [6]. Let [a] = [3]. Then we have $[a]^2 = [2]$. This is because $[a]^2 = [3]^2 = [3^2] = [9]$ and $9 \equiv_7 2$. Likewise, $[a]^3 = [6]$, $[a]^4 = [4]$, $[a]^5 = [5]$, $[a]^6 = [1]$. Therefore, we have expressed every nonzero element of \mathbb{Z}_7 as a power of [3].