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Problem 1

If r,s,t are positive integers, how many positive divisors does 2"3*5" have?

Let a and b be integers with b # 0. b is a divisor of a if b|a, or equivalently, a = bc for some integer c.
Any divisor of 2"3°5" must have the form 243b5¢ where 0 <a<r,0<b<sand0<c <t. We will prove
this by reductio. Suppose d cannot be expressed in the form 243°5¢. We claim d is a divisor of 23°5’. Let
us express d as 293°5¢- g, where 21 ¢, 31 ¢, 51¢, and ¢ > 1. Every integer d which cannot be expressed as
293P5¢ can be expressed as such due to the Fundamental Theorem of Arithmetic. Since d is a divisor of
27'3%5!, there exists an integer k such that dk = 2"3*5' —> k-29305¢. 4 = 235", Dividing both sides by
243b5¢ yields kg = 2" ~93°~b5'=¢. The truth of this statement is equivalent to the truth of the statement
q|27—43%=P5'=¢_ Theorem 1.4 states that if a|bc and (a,b) = 1, then a|c. Consider g|(2) (2"~ 135-5/=¢),
We know that (¢,2) = 1 because the theoretically maximum possible value of (a,b) is min(a,b), or 2 in
this case, but we know 2 { g. By Theorem 1.4, this means that ¢|2" =%~ 135725/=¢, We can rewrite this as
q|(2)(2r—4=235-b5!=¢)_ Using the same reasoning as above, from Theorem 1.4. and (g,2) = 1, it must
be true that ¢[2"~¢~23%705'=¢, We can repeat this process, exploiting Theorem 1.4. and the fact that
(¢,2)=1,(q,3) =1, and (¢,5) = 1 to continuously eliminate factors, until we end up finally at ¢|5. There
are four numbers which divide 5: £1 and £5. Since ¢ > 1, g ¢ {—1,1}. Since 51¢q, g ¢ {—5,5}. This is

a contradiction. Therefore, d must be expressible in the form 243P5¢ 1o be a divisor of 27355, [



Given this, we simply need to select all the possible combinations of values of a,b,c. This yields
(r+1)(s+1)(¢z+ 1) possibilities (the +1 to include the zeroth exponent). From the “uniqueness” guarantee
of the Fundamental Theorem of Arithmetic, there is no possibility of double-counting because the base of

each exponent is a prime number.

Problem 2

If p is prime and p is divide by 10, show that the remainder is one of 1,3,7,9.

Strictly speaking, this statement is false, as 2 is a prime number but its remainder when divide by 10 is
2. However, we will show the statement holds for p > 2 using a proof by contradiction. Suppose that there
exists some prime p such that the remainder when dividing by 10 is nor in {1,3,7,9}. By the division
algorithm, this means that the remainder will be one of {0,2,4,5,6,8}. In the case that the remainder is in
the set {0,2,4,6,8}, p can be rewritten as 10k + 2r for some integers r, k. For instance, if the remainder is
0, r = 0; if the remainder is 2, r = 1; if the remainder is 4, » = 2, and so on. Then, p can be rewritten as
2(5k + r), which means that 2|p. However, by the definition of a prime number, the only numbers which
divide p are 1 and +p. For all p # 2, this is a contradiction. In the case that the remainder is 5, p can be
rewritten as 10k + 5 for some integer k. Then, p can be rewritten as 5(2k + 1), which means 5|p. For all
p # 5, this is a contradiction. Therefore, it must be the case that the remainder of a prime number p when

divided by 10 is either 1, 3, 7, or 9. [

Problem 3

What is [8292%] € Zg?

We can rewrite [8292%] as a product of congruence classes: [8] ® [8] ®...® [8] = [8]?°?. From Theorem

2.3., [a] = [c] iff @ =, c. We know that 8 =9 —1; therefore, [8] = [~1]. As such, we can rewrite [8]?0%3
as [—1]2023, or alternatively as [(—1)292%]. (=1)?92> = —1, as (—1)¥ = 1 if 2|k and —1 if not. Therefore,
[82023] = [—1]. By Theorem 2.3. again, [—1] = [8]. As such, [829?%] in Zq is [8].

Problem 4

If a € Z, prove that a* is not congruent to 2 modulo 4 and or 3 modulo 4.
Per the division algorithm/theorem, every integer a can be written as 4n +r, where n,r € Z, 0 < r < 4.
a® is 16n? + 8nr+ r2. There are four values r can take on: 0, 1,2, 3. If r = 0, the expression simplifies to

16n2, which is 0 modulo 4 because it can be rewritten as 4(4n?) +0. If r = 1, the expression simplifies to
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16n> +8 + 1, which is 1 modulo 4 because it can be rewritten as 4(4n 4+ 2) 4 1. If » = 2, the expression
simplifies to 16n” 4 161 + 4, which is 0 modulo 4 because it can be rewritten as 4(4n> +4n -+ 1). Lastly,
if » = 3, the expression simplifies to 161> +24n +9, which is 1 modulo 4 because it can be rewritten as

4(4n® + 6n+2) + 1. Therefore, the square of an integer will always be either 0 or 1 modulo 4. [J
q g y

Problem 5
Prove that for any classes [al, [b] € Zy, [a] & [b] = [b] & [a].

We know that [a] & [b] = [a+ b]. Addition between integers is commutative (i.e. a+b = b+ a), so
therefore [a + b] = [b+ a]. We can rewrite [b+ a] as [b] @ [a]. Since this is a direct chain of equivalences,

we have that [a] ® [b] = [b] ® [a]. O

Problem 6

Find an element [a] in 77 such that every nonzero element of 7.7 is a power of [al.
There are six nonzero elements of Z7: [1],[2],[3],[4],[5],[6]. Let [a] = [3]. Then we have [a]*> = [2].
This is because [a]? = [3]? = [3%] = [9] and 9 =7 2. Likewise, [a]® = [6], [a]* = [4], [a]® = [5], [a]® = [1].

Therefore, we have expressed every nonzero element of Z7 as a power of [3].
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