Worksheet 1

Andre Ye^{1}

${ }^{1}$ University of Washington, MATH 402

+ Draft date October 8, 2023.

Problem 1

If r, s, t are positive integers, how many positive divisors does $2^{r} 3^{s} 5^{t}$ have?
Let a and b be integers with $b \neq 0 . b$ is a divisor of a if $b \mid a$, or equivalently, $a=b c$ for some integer c. Any divisor of $2^{r} 3^{s} 5^{t}$ must have the form $2^{a} 3^{b} 5^{c}$, where $0 \leq a<r, 0 \leq b<s$ and $0 \leq c<t$. We will prove this by reductio. Suppose d cannot be expressed in the form $2^{a} 3^{b} 5^{c}$. We claim d is a divisor of $2^{r} 3^{s} 5^{t}$. Let us express d as $2^{a} 3^{b} 5^{c} \cdot q$, where $2 \nmid q, 3 \nmid q, 5 \nmid q$, and $q>1$. Every integer d which cannot be expressed as $2^{a} 3^{b} 5^{c}$ can be expressed as such due to the Fundamental Theorem of Arithmetic. Since d is a divisor of $2^{r} 3^{s} 5^{t}$, there exists an integer k such that $d k=2^{r} 3^{s} 5^{t} \Longrightarrow k \cdot 2^{a} 3^{b} 5^{c} \cdot q=2^{r} 3^{s} 5^{t}$. Dividing both sides by $2^{a} 3^{b} 5^{c}$ yields $k q=2^{r-a} 3^{s-b} 5^{t-c}$. The truth of this statement is equivalent to the truth of the statement $q \mid 2^{r-a} 3^{s-b} 5^{t-c}$. Theorem 1.4 states that if $a \mid b c$ and $(a, b)=1$, then $a \mid c$. Consider $q \mid(2)\left(2^{r-a-1} 3^{s-b} 5^{t-c}\right)$. We know that $(q, 2)=1$ because the theoretically maximum possible value of (a, b) is $\min (a, b)$, or 2 in this case, but we know $2 \nmid q$. By Theorem 1.4, this means that $q \mid 2^{r-a-1} 3^{s-b} 5^{t-c}$. We can rewrite this as $q \mid(2)\left(2^{r-a-2} 3^{s-b} 5^{t-c}\right)$. Using the same reasoning as above, from Theorem 1.4. and $(q, 2)=1$, it must be true that $q \mid 2^{r-a-2} 3^{s-b} 5^{t-c}$. We can repeat this process, exploiting Theorem 1.4. and the fact that $(q, 2)=1,(q, 3)=1$, and $(q, 5)=1$ to continuously eliminate factors, until we end up finally at $q \mid 5$. There are four numbers which divide 5: ± 1 and ± 5. Since $q>1, q \notin\{-1,1\}$. Since $5 \nmid q, q \notin\{-5,5\}$. This is a contradiction. Therefore, d must be expressible in the form $2^{a} 3^{b} 5^{c}$ to be a divisor of $2^{r} 3^{s} 5^{t}$.

Given this, we simply need to select all the possible combinations of values of a, b, c. This yields $(r+1)(s+1)(t+1)$ possibilities (the +1 to include the zeroth exponent). From the "uniqueness" guarantee of the Fundamental Theorem of Arithmetic, there is no possibility of double-counting because the base of each exponent is a prime number.

Problem 2

If p is prime and p is divide by 10 , show that the remainder is one of $1,3,7,9$.
Strictly speaking, this statement is false, as 2 is a prime number but its remainder when divide by 10 is 2. However, we will show the statement holds for $p>2$ using a proof by contradiction. Suppose that there exists some prime p such that the remainder when dividing by 10 is not in $\{1,3,7,9\}$. By the division algorithm, this means that the remainder will be one of $\{0,2,4,5,6,8\}$. In the case that the remainder is in the set $\{0,2,4,6,8\}, p$ can be rewritten as $10 k+2 r$ for some integers r, k. For instance, if the remainder is $0, r=0$; if the remainder is $2, r=1$; if the remainder is $4, r=2$, and so on. Then, p can be rewritten as $2(5 k+r)$, which means that $2 \mid p$. However, by the definition of a prime number, the only numbers which divide p are ± 1 and $\pm p$. For all $p \neq 2$, this is a contradiction. In the case that the remainder is $5, p$ can be rewritten as $10 k+5$ for some integer k. Then, p can be rewritten as $5(2 k+1)$, which means $5 \mid p$. For all $p \neq 5$, this is a contradiction. Therefore, it must be the case that the remainder of a prime number p when divided by 10 is either $1,3,7$, or 9 .

Problem 3

What is $\left[8^{2023}\right] \in \mathbb{Z}_{9}$?
We can rewrite $\left[8^{2023}\right]$ as a product of congruence classes: $[8] \otimes[8] \otimes \ldots \otimes[8]=[8]^{2023}$. From Theorem 2.3., $[a]=[c]$ iff $a \equiv_{n} c$. We know that $8 \equiv{ }_{9}-1$; therefore, $[8]=[-1]$. As such, we can rewrite $[8]^{2023}$ as $[-1]^{2023}$, or alternatively as $\left[(-1)^{2023}\right] .(-1)^{2023}=-1$, as $(-1)^{k}=1$ if $2 \mid k$ and -1 if not. Therefore, $\left[8^{2023}\right]=[-1]$. By Theorem 2.3. again, $[-1]=[8]$. As such, $\left[8^{2023}\right]$ in \mathbb{Z}_{9} is $[8]$.

Problem 4

If $a \in \mathbb{Z}$, prove that a^{2} is not congruent to 2 modulo 4 and or 3 modulo 4 .
Per the division algorithm/theorem, every integer a can be written as $4 n+r$, where $n, r \in \mathbb{Z}, 0 \leq r<4$. a^{2} is $16 n^{2}+8 n r+r^{2}$. There are four values r can take on: $0,1,2,3$. If $r=0$, the expression simplifies to $16 n^{2}$, which is 0 modulo 4 because it can be rewritten as $4\left(4 n^{2}\right)+0$. If $r=1$, the expression simplifies to
$16 n^{2}+8+1$, which is 1 modulo 4 because it can be rewritten as $4\left(4 n^{2}+2\right)+1$. If $r=2$, the expression simplifies to $16 n^{2}+16 n+4$, which is 0 modulo 4 because it can be rewritten as $4\left(4 n^{2}+4 n+1\right)$. Lastly, if $r=3$, the expression simplifies to $16 n^{2}+24 n+9$, which is 1 modulo 4 because it can be rewritten as $4\left(4 n^{2}+6 n+2\right)+1$. Therefore, the square of an integer will always be either 0 or 1 modulo 4 .

Problem 5

Prove that for any classes $[a],[b] \in \mathbb{Z}_{n},[a] \oplus[b]=[b] \oplus[a]$.
We know that $[a] \oplus[b]=[a+b]$. Addition between integers is commutative (i.e. $a+b=b+a$), so therefore $[a+b]=[b+a]$. We can rewrite $[b+a]$ as $[b] \oplus[a]$. Since this is a direct chain of equivalences, we have that $[a] \oplus[b]=[b] \oplus[a]$.

Problem 6

Find an element $[a]$ in \mathbb{Z}_{7} such that every nonzero element of \mathbb{Z}_{7} is a power of $[a]$.
There are six nonzero elements of $\mathbb{Z}_{7}:[1],[2],[3],[4],[5],[6]$. Let $[a]=[3]$. Then we have $[a]^{2}=[2]$. This is because $[a]^{2}=[3]^{2}=\left[3^{2}\right]=[9]$ and $9 \equiv_{7}$ 2. Likewise, $[a]^{3}=[6],[a]^{4}=[4],[a]^{5}=[5],[a]^{6}=[1]$. Therefore, we have expressed every nonzero element of \mathbb{Z}_{7} as a power of [3].

