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Problem 1

Let x⃗, y⃗ ∈ Rn with x⃗ ̸= 0 ̸= y⃗. The Cauchy-Schwarz inequality implies ⟨x⃗, y⃗⟩ ≤ ∥x⃗∥ · ∥y⃗∥. Suppose we

have equality: ⟨x⃗, y⃗⟩ = ∥x⃗∥ · ∥y⃗∥. We will show it follows that there exists some λ ∈ R such that x⃗ = λy⃗.

Squaring both sides of ⟨x⃗, y⃗⟩ = ∥x⃗∥ · ∥y⃗∥ gives us ⟨x⃗, y⃗⟩2 = ∥x⃗∥2∥y⃗∥2, which can be rewritten

as 0 = ∥x⃗∥2 − ⟨x⃗, y⃗⟩2/∥y⃗|2. Recall that in the proof of the Cauchy-Schwarz inequality, the function

f(t) = ∥x⃗− ty⃗∥2 is minimized at t = ⟨x⃗, y⃗⟩/∥y⃗∥2, at which f(t) can be written as ∥x⃗∥2 − ⟨x⃗, y⃗⟩2/∥y⃗∥2.

Given that ∥x⃗∥2 − ⟨x⃗, y⃗⟩2/∥y⃗|2 is the minimum off(t), and that ∥x⃗∥2 − ⟨x⃗, y⃗⟩2/∥y⃗|2 = 0, we conclude

that f(⟨x⃗, y⃗⟩/∥y⃗∥2) = ∥x⃗− (⟨x⃗, y⃗⟩/∥y⃗∥2) y⃗∥2 = 0. If the norm of a vector is zero, then the vector

itself must be the zero vector. Therefore, we know that x⃗ − (⟨x⃗, y⃗⟩/∥y⃗∥2) y⃗ = 0, or equivalently that

x⃗ = (⟨x⃗, y⃗⟩/∥y⃗∥2)y⃗. Therefore, there exists some λ ∈ R such that x⃗ = λy⃗, this λ being ⟨x⃗, y⃗⟩/∥y⃗∥2. □

Problem 2

Proof 1

Let x, y ∈ Rn. Then, we will show that 2(∥x∥2 + ∥y∥2) = ∥x+ y∥2 + ∥x− y∥2.

2(∥x∥2 + ∥y∥2) = 2(x · x+ y · y) using ∥a∥2 = a · a

= (x · x+ 2(x · y) + y · y) + (x · x− 2(x · y) + y · y) adding cancellable terms

= ∥x+ y∥2 + ∥x− y∥2. □ grouping / “un-distributing”



Proof 2

Let x, y ∈ Rn. Then, we will show that x · y = ∥x+y∥2−∥x−y∥2
4

.

x · y =
1

4
· 4(x · y)

=
1

4
(2x · y + 2x · y) separation

=
1

4
((x · x+ 2x · y + y · y)− (x · x− 2x · y + y · y)) adding cancellable terms

=
1

4
((x+ y) · (x+ y)− (x− y) · (x− y)) grouping

=
∥x+ y∥2 − ∥x− y∥2

4
. □ using a · a = ∥a∥2

Problem 3

Suppose there are m vectors x1, ..., xm ∈ Rn which satisfy ⟨xi, xj⟩ = 0 for all i ̸= j. We will show it

follows that ∥
∑m

i=1 xi∥2 =
∑m

i=1 ∥xi∥2 with a proof by induction.

Our inductive proposition P (k) is that ∥
∑k

i=1 xi∥2 =
∑k

i=1 ∥xi∥2. We begin by showing the base case

P (1) holds. When k = 1, P (k) reduces to ∥x1∥2 = ∥x1∥2, which is evidently true. Next, we will show

that supposing P (k) is true, P (k + 1) is necessarily true.

P (k) := ∥x1 + ...+ xk∥2 = ∥x1∥2 + ...+ ∥xk∥2

P (k + 1) := ∥x1 + ...+ xk + xk+1∥2 = ∥x1∥2 + ...+ ∥xk|2 + ∥xk+1∥2

Let us group the terms in P (k + 1) to separate xk+1 from x1, ..., xk.

P (k + 1) ⇐⇒ ∥(x1 + ...+ xk) + xk+1∥2 =
(
∥x1∥2 + ...+ ∥xk|2

)
+ ∥xk+1∥2

Using P (k), we can rewrite the first term of the LHS.

P (k + 1) ⇐⇒ ∥(x1 + ...+ xk) + xk+1∥2 =
(
∥x1 + ...+ xk∥2

)
+ ∥xk+1∥2

The norms can be rewritten as dot products, given that ∥a∥2 = ⟨a, a⟩.

P (k+1) ⇐⇒ ⟨(x1+ ...+xk)+xk+1, (x1+ ...+xk)+xk+1⟩ = ⟨x1+ ...+xk, x1+ ...+xk⟩+∥xk+1∥2

We will distribute the dot product in the LHS:

⟨(x1 + ...+ xk) + xk+1, (x1 + ...+ xk) + xk+1⟩

=⟨x1 + ...+ xk, x1 + ...+ xk⟩+ 2⟨x1 + ...+ xk, xk+1⟩+ ⟨xk+1, xk+1⟩
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At this point, the LHS and RHS of the equivalence statement share two terms, ⟨x1 + ...+ xk, x1 + ...+ xk⟩

and ⟨xk+1, xk+1⟩ (equivalently written as ∥xk+1∥2). Subtracting these terms from both sides (and dividing

both sides by 2) yields the following equation:

P (k + 1) ⇐⇒ ⟨x1 + ...+ xk, xk+1⟩ = 0

⇐⇒ ⟨x1, xk+1⟩+ ...+ ⟨xk, xk+1⟩ = 0

From the premise, ⟨xi, xj⟩ = 0 for all i ̸= j. Therefore, every term on the LHS is zero. The resulting

expression, 0 = 0, is true. Therefore, P (k + 1) is true, provided that P (k) is true. Since P (k) implies

P (k + 1), and P (k) holds for all k ∈ N. □

Problem 4

Given two real-valued functions on the unit interval f, g : [0, 1] → R, the inner product is defined as

⟨f, g⟩ =
∫ 1

0
f(x)g(x)dx. We will go through the proof of the Cauchy-Schwartz inequality and show that

every step still works using this notion of the inner product between two real-valued functions, ultimately

showing that
∣∣∣∫ 1

0
f(x)g(x)dx

∣∣∣ ≤ (∫ 1

0
f(x)2dx

)1/2 (∫ 1

0
g(x)2dx

)1/2

.

To begin with, an inner product must be symmetric and bilinear. Firstly,
∫ 1

0
f(x)g(x)dx =∫ 1

0
g(x)f(x)dx, which shows symmetry holds. Moreover, linearity is preserved: ⟨f, g+h⟩ = ⟨f, g⟩+⟨f, h⟩.

In integrals, this is equivalent to stating that
∫ 1

0
f(x)(g(x) + h(x))dx =

∫ 1

0
f(x)g(x)dx+

∫ 1

0
f(x)h(x)dx.

This is true because the integral itself is linear. Bilinearity follows trivially from symmetry and linearity.

If g(x) = 0, both sides of the inequality are zero. Otherwise, we introduce a real variable t and consider a

function across functions q quadratic in t, q(t) = |f− tg|2 = ⟨f− tg, f− tg⟩ = ⟨f, f⟩−2t⟨f, g⟩+ t2⟨g, g⟩.

The minimum using the quadratic formula can be found at t = ⟨f,g⟩
⟨g,g⟩ , which yields the value q(t) =

⟨f, f⟩ − ⟨f,g⟩2
⟨g,g⟩ . Because the absolute value is zero or positive, and squaring a zero or positive value will

always yield a value of zero or positive value, q(t) = |f − tg|2 ≥ 0. This means that the value at the

minimizing value of t will also be greater than or equal to zero: ⟨f, f⟩ − ⟨f,g⟩2
⟨g,g⟩ ≥ 0. Multiplying both

sides by ⟨g, g⟩ and rearranging yields ⟨f, f⟩ · ⟨g, g⟩ ≥ ⟨f, g⟩2. Since ⟨a, a⟩ = ∥a∥2, we can rewrite this as

∥f∥2∥g∥2 ≥ ⟨f, g⟩2. Taking the square root of both sides yields ⟨f, g⟩ ≤ ∥f∥∥g∥. Rewriting this in terms

of the norm definition of the inner product yields
∣∣∣∫ 1

0
f(x)g(x)dx

∣∣∣ ≤ (∫ 1

0
f(x)2dx

)1/2 (∫ 1

0
g(x)2dx

)1/2

.

Therefore, all of the steps of Cauchy-Schwartz hold under the inner product across functions. □
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Problem 5

Problem 5a.

We will show that, for all n ∈ N, 13 + 23 + ...+ n3 = (1 + 2 + ...+ n)2 by induction.

Our inductive proposition P (k) is that 13 + 23 + ... + k3 = (1 + 2 + ... + k)2. The base case P (1)

holds: 13 = 12 =⇒ 1 = 1. Next, we will show that if P (k) is true, P (k + 1) is necessarily true.

P (k) = 13 + 23 + ...+ k3 = (1 + 2 + ...+ k)2

P (k + 1) = 13 + 23 + ...+ k3 + (k + 1)3 = (1 + 2 + ...+ k + (k + 1))2

Expanding the RHS of P (k + 1) yields

(13 + 23 + ...+ k3) + (k + 1)3 = (1 + 2 + ...+ k)2 + 2(1 + 2 + ...+ k)(k + 1) + (k + 1)2

By P (k), the first term of the RHS and the first term of the RHS are equivalent, and both can be subtracted

from the equation.

(k + 1)3 = 2(1 + 2 + ...+ k)(k + 1) + (k + 1)2

We will endeavor in laborious algebra to prove the equality:

(k + 1)3 = 2(1 + 2 + ...+ k)(k + 1) + (k + 1)2

= 2

(
k(k + 1)

2

)
(k + 1) + k2 + 2k + 1

= k(k + 1)2 + k2 + k + 1

= k(k2 + 2k + 1) + k2 + 2k + 1

= k3 + 2k2 + k + k2 + 2k + 1

= k3 + 3k2 + 3k + 1

= (k + 1)3

Therefore, P (k) implies P (k + 1), and P (k) holds for all k ∈ N. □

Problem 5b.

We will show that a set {a1, a2, ..., an} has 2n subsets, of which 2n−1 have an even number of elements

and 2n−1 have an odd number of elements, using induction.

Our inductive proposition P (n) is that an arbitrary set of cardinality n has 2n subsets of which 2n−1 have

an even cardinality and the other 2n−1 have an odd cardinality. We will show P (n) holds across n ∈ N. In
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the base case P (1), for a set of size 1 {x1}, there are 21 subsets, the empty set ∅ (even cardinality) and {x1}

(odd cardinality). There are 21−1 even cardinality subsets and 21−1 odd cardinality subsets. Therefore, P (1)

holds. Next, we will show that P (k) implies P (k + 1). Suppose we have a set of cardinality k + 1. This

is equivalent to a set of cardinality k, {x1, x2, ..., xk} with an additional element xk+1. By the inductive

proposition, the set of cardinality k has 2k−1 subsets with an even cardinality and 2k−1 subsets with an odd

cardinality. The set of all subsets of a cardinality-k + 1 set can be partitioned by the set of odd-cardinality

subsets and the set of even-cardinality subsets. In turn, each of these sets can be partitioned by the set

of odd/even-cardinality subsets including xk+1 and the set of odd/even-cardinality subsets not including

xk+1. For each set with an even cardinality, we can add xk+1. This generates 2k−1 unique sets with an odd

cardinality, since adding one element to a set with even cardinality makes it odd. Likewise, for each set

with an odd cardinality, we can add xk+1. This generates 2k−1 unique sets with an even cardinality. In

total, this yields 2k−1 + 2k−1 = 2k odd-cardinality subsets and 2k−1 + 2k−1 = 2k even-cardinality subsets.

We have shown that P (k) implies P (k + 1). Therefore, by induction, P (n) holds across n ∈ Z+. □

Problem 6

Let A be a finite set with an odd number of elements n. Assume furthermore that f : A → A is a function

satisfying f(f(a)) = a for all a ∈ Aa. We will show that there exists at least one element satisfying

f(a) = a.

Suppose A has only 1 element. Then it trivially follows that f(a) = a, because there is only one

possible term to map from and map to. Suppose A has more than 1 elements. Let x1 be some element in A.

Let f(x1) = x2, for some x2 ∈ A. Moreover, recall that f(f(x1)) = x1 must be true, per the definition of

f . Then, we have that f(x2) = x1. Let x3 be an element in A distinct from both x1 and x2. f(x3) cannot

have the same value as x2 – if this were the case, then f(f(x3)) = x1 ̸= x3; likewise, f(x3) cannot be

equal to x1, as if this were the case, then f(f(x1)) = x2 ̸= x3. Therefore, f(x3) must map to an element

of A distinct from either x1 or x2. Call this element x4. Using the same reasoning as above, invoking

the property that f(f(a)) = a, we have that f(x3) = x4 and f(x4) = x3. In general, consider adding

distinct elements in pairs x2k, x2k+1 for k ∈ Z+ ∪ {0}. By the same reasoning above, both elements must

be distinct from all elements in {xi : i ∈ Z+, i < k} to preserve the properties that f(f(a)) = a for all

elements in this set. Moreover, f(x2k) = x2k+1 and f(xk+1) = x2k, using the same reasoning above.. In

the end, we only have one more element xn left in A. We will always have one element left because A is

odd, whereas we have hitherto only covered the elements of A in pairs. Using the same reasoning as above,
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f(xn) cannot map to any other element in A, as then the criteria that f(f(xn)) = xn would not be true.

Therefore, since f(xn) must map to some element in A, but cannot map to any element in A \ {xn}, f(xn)

must be equal to xn. □

In the context of a ballroom dance, this means that in an odd group of people who are told to dance in

pairs, such that if x dances with y then y must also dance with x, then one individual will be left utterly

alone, without anyone else to dance with, except themselves.

Problem 7

Let f(x) = x if x is rational and f(x) = 0 if x is irrational. We will show that f is continuous at x = 0

and nowhere else.

A function f : R → R is continuous at a point a if limx→a f(x) = f(a). This means that if a function

were continuous, then ∀ϵ∈R+ : ∃δ∈R+ such that |f(x)− f(a)| < ϵ, for 0 < |x− a| < δ. Let us consider an

arbitrary ϵ ∈ R+. To show that f is continuous at a = 0, we would need to demonstrate that there exists

some δ ∈ R+ such that |f(x)− f(0)| = |f(x)| < ϵ for 0 < |x| < δ. Let δ = ϵ/2. Then x is constrained

to the interval (0, ϵ/2). f(x) will either be 0 if x is irrational and x if x is rational. If x is irrational, then

|f(x)| < ϵ holds, as 0 < ϵ. If x is rational, then |f(x)| < ϵ still holds, as ϵ/2 < ϵ, ϵ/2 being an upper

bound on the possible value of x. Therefore, for all ϵ, there exists some δ (defined in terms of ϵ) such that

for x where 0 < |x| < δ, |f(x)| < ϵ holds. This demonstrates that f is continuous at x = 0.

On the other hand, we need to show that f is discontinuous at nonzero a. That is, if a is not zero, f

is not continuous. Consider an arbitrary ϵ ∈ R+ and a ∈ R \ {0}. Suppose a is rational. Then, if f is

continuous at a, ∀ϵ∈R+ : ∃δ∈R+ s.t. |f(x)− a| < ϵ, for 0 < |x− a| < δ. Suppose ϵ = |a/2|. Let δ be an

arbitrary real positive number, and γ be a positive irrational less than δ. Then setting x = a+ γ satisfies

|(a+γ)−a| < δ. Because a rational added to an irrational is an irrational, f(a+γ) = 0. Then, it does not

hold that ∀ϵ∈R+|0− a| < ϵ for nonzero a, because there is no δ ∈ R+ such that the statement |0− a| < ϵ

holds for ϵ = |a/2|, which is |a| < |a/2|. Therefore, if a is rational and nonzero, f is not continuous at a.

Now, suppose a is irrational. If f is continuous at a, ∀ϵ∈R+ : ∃δ∈R+ s.t. |f(x)| < ϵ, for 0 < |x− a| < δ.

Suppose again that ϵ = |a/2|, and δ be any positive real number. Let x be a nonzero rational number chosen

from the interval (a, a+ δ) if x is positive or (a− δ, a) if x is negative. Then the interval 0 < |x− a| < δ

is necessarily satisfied, yet since f(x) = x as x is rational and x is nonzero, |f(x)| = |x| < ϵ does not

hold. Since |a| = 2ϵ and x = a + γ where 0 < γ < δ, |f(x)| = |x| < ϵ reduces to 2ϵ + γ < ϵ, which

is clearly not true. As such, there is no value of δ such that for 0 < |x − a| < δ, |f(x)| < ϵ holds for
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ϵ = |a/2|. Therefore, if a is irrational and nonzero, f is not continuous at a. Hence, f is continuous at

x = 0 and discontinuous everywhere else. □
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