Homework 1

Andre $\mathbf{Y e}^{1}$
${ }^{1}$ University of Washington, MATH 334
+ Draft date October 5, 2023.

Problem 1

Let $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ with $\vec{x} \neq 0 \neq \vec{y}$. The Cauchy-Schwarz inequality implies $\langle\vec{x}, \vec{y}\rangle \leq\|\vec{x}\| \cdot\|\vec{y}\|$. Suppose we have equality: $\langle\vec{x}, \vec{y}\rangle=\|\vec{x}\| \cdot\|\vec{y}\|$. We will show it follows that there exists some $\lambda \in \mathbb{R}$ such that $\vec{x}=\lambda \vec{y}$.

Squaring both sides of $\langle\vec{x}, \vec{y}\rangle=\|\vec{x}\| \cdot\|\vec{y}\|$ gives us $\langle\vec{x}, \vec{y}\rangle^{2}=\|\vec{x}\|^{2}\|\vec{y}\|^{2}$, which can be rewritten as $0=\|\vec{x}\|^{2}-\langle\vec{x}, \vec{y}\rangle^{2} / \|\left.\vec{y}\right|^{2}$. Recall that in the proof of the Cauchy-Schwarz inequality, the function $f(t)=\|\vec{x}-t \vec{y}\|^{2}$ is minimized at $t=\langle\vec{x}, \vec{y}\rangle /\|\vec{y}\|^{2}$, at which $f(t)$ can be written as $\|\vec{x}\|^{2}-\langle\vec{x}, \vec{y}\rangle^{2} /\|\vec{y}\|^{2}$. Given that $\|\vec{x}\|^{2}-\langle\vec{x}, \vec{y}\rangle^{2} / \|\left.\vec{y}\right|^{2}$ is the minimum of $f(t)$, and that $\|\vec{x}\|^{2}-\langle\vec{x}, \vec{y}\rangle^{2} / \|\left.\vec{y}\right|^{2}=0$, we conclude that $f\left(\langle\vec{x}, \vec{y}\rangle /\|\vec{y}\|^{2}\right)=\left\|\vec{x}-\left(\langle\vec{x}, \vec{y}\rangle /\|\vec{y}\|^{2}\right) \vec{y}\right\|^{2}=0$. If the norm of a vector is zero, then the vector itself must be the zero vector. Therefore, we know that $\vec{x}-\left(\langle\vec{x}, \vec{y}\rangle /\|\vec{y}\|^{2}\right) \vec{y}=0$, or equivalently that $\vec{x}=\left(\langle\vec{x}, \vec{y}\rangle /\|\vec{y}\|^{2}\right) \vec{y}$. Therefore, there exists some $\lambda \in \mathbb{R}$ such that $\vec{x}=\lambda \vec{y}$, this λ being $\langle\vec{x}, \vec{y}\rangle /\|\vec{y}\|^{2}$.

Problem 2

Proof 1

Let $x, y \in \mathbb{R}^{n}$. Then, we will show that $2\left(\|x\|^{2}+\|y\|^{2}\right)=\|x+y\|^{2}+\|x-y\|^{2}$.

$$
\begin{aligned}
2\left(\|x\|^{2}+\|y\|^{2}\right) & =2(x \cdot x+y \cdot y) \\
& =(x \cdot x+2(x \cdot y)+y \cdot y)+(x \cdot x-2(x \cdot y)+y \cdot y) \\
& =\|x+y\|^{2}+\|x-y\|^{2} .
\end{aligned}
$$

$$
\text { using }\|a\|^{2}=a \cdot a
$$

Proof 2

Let $x, y \in \mathbb{R}^{n}$. Then, we will show that $x \cdot y=\frac{\|x+y\|^{2}-\|x-y\|^{2}}{4}$.

$$
\begin{array}{rlr}
x \cdot y & =\frac{1}{4} \cdot 4(x \cdot y) & \\
& =\frac{1}{4}(2 x \cdot y+2 x \cdot y) & \text { separation } \\
& =\frac{1}{4}((x \cdot x+2 x \cdot y+y \cdot y)-(x \cdot x-2 x \cdot y+y \cdot y)) & \text { adding cancellable terms } \\
& =\frac{1}{4}((x+y) \cdot(x+y)-(x-y) \cdot(x-y)) & \text { grouping } \\
& =\frac{\|x+y\|^{2}-\|x-y\|^{2}}{4} . & \square
\end{array} \quad \text { using } a \cdot a=\|a\|^{2}
$$

Problem 3

Suppose there are m vectors $x_{1}, \ldots, x_{m} \in \mathbb{R}^{n}$ which satisfy $\left\langle x_{i}, x_{j}\right\rangle=0$ for all $i \neq j$. We will show it follows that $\left\|\sum_{i=1}^{m} x_{i}\right\|^{2}=\sum_{i=1}^{m}\left\|x_{i}\right\|^{2}$ with a proof by induction.

Our inductive proposition $P(k)$ is that $\left\|\sum_{i=1}^{k} x_{i}\right\|^{2}=\sum_{i=1}^{k}\left\|x_{i}\right\|^{2}$. We begin by showing the base case $P(1)$ holds. When $k=1, P(k)$ reduces to $\left\|x_{1}\right\|^{2}=\left\|x_{1}\right\|^{2}$, which is evidently true. Next, we will show that supposing $P(k)$ is true, $P(k+1)$ is necessarily true.

$$
\begin{aligned}
P(k) & :=\left\|x_{1}+\ldots+x_{k}\right\|^{2}=\left\|x_{1}\right\|^{2}+\ldots+\left\|x_{k}\right\|^{2} \\
P(k+1) & :=\left\|x_{1}+\ldots+x_{k}+x_{k+1}\right\|^{2}=\left\|x_{1}\right\|^{2}+\ldots+\left\|\left.x_{k}\right|^{2}+\right\| x_{k+1} \|^{2}
\end{aligned}
$$

Let us group the terms in $P(k+1)$ to separate x_{k+1} from x_{1}, \ldots, x_{k}.

$$
P(k+1) \Longleftrightarrow\left\|\left(x_{1}+\ldots+x_{k}\right)+x_{k+1}\right\|^{2}=\left(\left\|x_{1}\right\|^{2}+\ldots+\|\left. x_{k}\right|^{2}\right)+\left\|x_{k+1}\right\|^{2}
$$

Using $P(k)$, we can rewrite the first term of the LHS.

$$
P(k+1) \Longleftrightarrow\left\|\left(x_{1}+\ldots+x_{k}\right)+x_{k+1}\right\|^{2}=\left(\left\|x_{1}+\ldots+x_{k}\right\|^{2}\right)+\left\|x_{k+1}\right\|^{2}
$$

The norms can be rewritten as dot products, given that $\|a\|^{2}=\langle a, a\rangle$.

$$
P(k+1) \Longleftrightarrow\left\langle\left(x_{1}+\ldots+x_{k}\right)+x_{k+1},\left(x_{1}+\ldots+x_{k}\right)+x_{k+1}\right\rangle=\left\langle x_{1}+\ldots+x_{k}, x_{1}+\ldots+x_{k}\right\rangle+\left\|x_{k+1}\right\|^{2}
$$

We will distribute the dot product in the LHS:

$$
\begin{aligned}
& \left\langle\left(x_{1}+\ldots+x_{k}\right)+x_{k+1},\left(x_{1}+\ldots+x_{k}\right)+x_{k+1}\right\rangle \\
= & \left\langle x_{1}+\ldots+x_{k}, x_{1}+\ldots+x_{k}\right\rangle+2\left\langle x_{1}+\ldots+x_{k}, x_{k+1}\right\rangle+\left\langle x_{k+1}, x_{k+1}\right\rangle
\end{aligned}
$$

At this point, the LHS and RHS of the equivalence statement share two terms, $\left\langle x_{1}+\ldots+x_{k}, x_{1}+\ldots+x_{k}\right\rangle$ and $\left\langle x_{k+1}, x_{k+1}\right\rangle$ (equivalently written as $\left\|x_{k+1}\right\|^{2}$). Subtracting these terms from both sides (and dividing both sides by 2) yields the following equation:

$$
\begin{aligned}
P(k+1) & \Longleftrightarrow\left\langle x_{1}+\ldots+x_{k}, x_{k+1}\right\rangle=0 \\
& \Longleftrightarrow\left\langle x_{1}, x_{k+1}\right\rangle+\ldots+\left\langle x_{k}, x_{k+1}\right\rangle=0
\end{aligned}
$$

From the premise, $\left\langle x_{i}, x_{j}\right\rangle=0$ for all $i \neq j$. Therefore, every term on the LHS is zero. The resulting expression, $0=0$, is true. Therefore, $P(k+1)$ is true, provided that $P(k)$ is true. Since $P(k)$ implies $P(k+1)$, and $P(k)$ holds for all $k \in \mathbb{N}$.

Problem 4

Given two real-valued functions on the unit interval $f, g:[0,1] \rightarrow \mathbb{R}$, the inner product is defined as $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$. We will go through the proof of the Cauchy-Schwartz inequality and show that every step still works using this notion of the inner product between two real-valued functions, ultimately showing that $\left|\int_{0}^{1} f(x) g(x) d x\right| \leq\left(\int_{0}^{1} f(x)^{2} d x\right)^{1 / 2}\left(\int_{0}^{1} g(x)^{2} d x\right)^{1 / 2}$.

To begin with, an inner product must be symmetric and bilinear. Firstly, $\int_{0}^{1} f(x) g(x) d x=$ $\int_{0}^{1} g(x) f(x) d x$, which shows symmetry holds. Moreover, linearity is preserved: $\langle f, g+h\rangle=\langle f, g\rangle+\langle f, h\rangle$. In integrals, this is equivalent to stating that $\int_{0}^{1} f(x)(g(x)+h(x)) d x=\int_{0}^{1} f(x) g(x) d x+\int_{0}^{1} f(x) h(x) d x$. This is true because the integral itself is linear. Bilinearity follows trivially from symmetry and linearity.

If $g(x)=0$, both sides of the inequality are zero. Otherwise, we introduce a real variable t and consider a function across functions q quadratic in $t, q(t)=|f-t g|^{2}=\langle f-t g, f-t g\rangle=\langle f, f\rangle-2 t\langle f, g\rangle+t^{2}\langle g, g\rangle$. The minimum using the quadratic formula can be found at $t=\frac{\langle f, g\rangle}{\langle g, g\rangle}$, which yields the value $q(t)=$ $\langle f, f\rangle-\frac{\langle f, g\rangle^{2}}{\langle g, g\rangle}$. Because the absolute value is zero or positive, and squaring a zero or positive value will always yield a value of zero or positive value, $q(t)=|f-t g|^{2} \geq 0$. This means that the value at the minimizing value of t will also be greater than or equal to zero: $\langle f, f\rangle-\frac{\langle f, g\rangle^{2}}{\langle g, g\rangle} \geq 0$. Multiplying both sides by $\langle g, g\rangle$ and rearranging yields $\langle f, f\rangle \cdot\langle g, g\rangle \geq\langle f, g\rangle^{2}$. Since $\langle a, a\rangle=\|a\|^{2}$, we can rewrite this as $\|f\|^{2}\|g\|^{2} \geq\langle f, g\rangle^{2}$. Taking the square root of both sides yields $\langle f, g\rangle \leq\|f\|\|g\|$. Rewriting this in terms of the norm definition of the inner product yields $\left|\int_{0}^{1} f(x) g(x) d x\right| \leq\left(\int_{0}^{1} f(x)^{2} d x\right)^{1 / 2}\left(\int_{0}^{1} g(x)^{2} d x\right)^{1 / 2}$. Therefore, all of the steps of Cauchy-Schwartz hold under the inner product across functions.

Problem 5

Problem 5a.

We will show that, for all $n \in \mathbb{N}, 1^{3}+2^{3}+\ldots+n^{3}=(1+2+\ldots+n)^{2}$ by induction.
Our inductive proposition $P(k)$ is that $1^{3}+2^{3}+\ldots+k^{3}=(1+2+\ldots+k)^{2}$. The base case $P(1)$ holds: $1^{3}=1^{2} \Longrightarrow 1=1$. Next, we will show that if $P(k)$ is true, $P(k+1)$ is necessarily true.

$$
\begin{aligned}
P(k) & =1^{3}+2^{3}+\ldots+k^{3}=(1+2+\ldots+k)^{2} \\
P(k+1) & =1^{3}+2^{3}+\ldots+k^{3}+(k+1)^{3}=(1+2+\ldots+k+(k+1))^{2}
\end{aligned}
$$

Expanding the RHS of $P(k+1)$ yields

$$
\left(1^{3}+2^{3}+\ldots+k^{3}\right)+(k+1)^{3}=(1+2+\ldots+k)^{2}+2(1+2+\ldots+k)(k+1)+(k+1)^{2}
$$

By $P(k)$, the first term of the RHS and the first term of the RHS are equivalent, and both can be subtracted from the equation.

$$
(k+1)^{3}=2(1+2+\ldots+k)(k+1)+(k+1)^{2}
$$

We will endeavor in laborious algebra to prove the equality:

$$
\begin{aligned}
(k+1)^{3} & =2(1+2+\ldots+k)(k+1)+(k+1)^{2} \\
& =2\left(\frac{k(k+1)}{2}\right)(k+1)+k^{2}+2 k+1 \\
& =k(k+1)^{2}+k^{2}+k+1 \\
& =k\left(k^{2}+2 k+1\right)+k^{2}+2 k+1 \\
& =k^{3}+2 k^{2}+k+k^{2}+2 k+1 \\
& =k^{3}+3 k^{2}+3 k+1 \\
& =(k+1)^{3}
\end{aligned}
$$

Therefore, $P(k)$ implies $P(k+1)$, and $P(k)$ holds for all $k \in \mathbb{N}$.

Problem 5b.

We will show that a set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ has 2^{n} subsets, of which 2^{n-1} have an even number of elements and 2^{n-1} have an odd number of elements, using induction.

Our inductive proposition $P(n)$ is that an arbitrary set of cardinality n has 2^{n} subsets of which 2^{n-1} have an even cardinality and the other 2^{n-1} have an odd cardinality. We will show $P(n)$ holds across $n \in \mathbb{N}$. In
the base case $P(1)$, for a set of size $1\left\{x_{1}\right\}$, there are 2^{1} subsets, the empty set \emptyset (even cardinality) and $\left\{x_{1}\right\}$ (odd cardinality). There are 2^{1-1} even cardinality subsets and 2^{1-1} odd cardinality subsets. Therefore, $P(1)$ holds. Next, we will show that $P(k)$ implies $P(k+1)$. Suppose we have a set of cardinality $k+1$. This is equivalent to a set of cardinality $k,\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ with an additional element x_{k+1}. By the inductive proposition, the set of cardinality k has 2^{k-1} subsets with an even cardinality and 2^{k-1} subsets with an odd cardinality. The set of all subsets of a cardinality- $k+1$ set can be partitioned by the set of odd-cardinality subsets and the set of even-cardinality subsets. In turn, each of these sets can be partitioned by the set of odd/even-cardinality subsets including x_{k+1} and the set of odd/even-cardinality subsets not including x_{k+1}. For each set with an even cardinality, we can add x_{k+1}. This generates 2^{k-1} unique sets with an odd cardinality, since adding one element to a set with even cardinality makes it odd. Likewise, for each set with an odd cardinality, we can add x_{k+1}. This generates 2^{k-1} unique sets with an even cardinality. In total, this yields $2^{k-1}+2^{k-1}=2^{k}$ odd-cardinality subsets and $2^{k-1}+2^{k-1}=2^{k}$ even-cardinality subsets. We have shown that $P(k)$ implies $P(k+1)$. Therefore, by induction, $P(n)$ holds across $n \in \mathbb{Z}^{+}$.

Problem 6

Let A be a finite set with an odd number of elements n. Assume furthermore that $f: A \rightarrow A$ is a function satisfying $f(f(a))=a$ for all $a \in A$ a. We will show that there exists at least one element satisfying $f(a)=a$.

Suppose A has only 1 element. Then it trivially follows that $f(a)=a$, because there is only one possible term to map from and map to. Suppose A has more than 1 elements. Let x_{1} be some element in A. Let $f\left(x_{1}\right)=x_{2}$, for some $x_{2} \in A$. Moreover, recall that $f\left(f\left(x_{1}\right)\right)=x_{1}$ must be true, per the definition of f. Then, we have that $f\left(x_{2}\right)=x_{1}$. Let x_{3} be an element in A distinct from both x_{1} and $x_{2} . f\left(x_{3}\right)$ cannot have the same value as x_{2} - if this were the case, then $f\left(f\left(x_{3}\right)\right)=x_{1} \neq x_{3}$; likewise, $f\left(x_{3}\right)$ cannot be equal to x_{1}, as if this were the case, then $f\left(f\left(x_{1}\right)\right)=x_{2} \neq x_{3}$. Therefore, $f\left(x_{3}\right)$ must map to an element of A distinct from either x_{1} or x_{2}. Call this element x_{4}. Using the same reasoning as above, invoking the property that $f(f(a))=a$, we have that $f\left(x_{3}\right)=x_{4}$ and $f\left(x_{4}\right)=x_{3}$. In general, consider adding distinct elements in pairs $x_{2 k}, x_{2 k+1}$ for $k \in \mathbb{Z}^{+} \cup\{0\}$. By the same reasoning above, both elements must be distinct from all elements in $\left\{x_{i}: i \in \mathbb{Z}^{+}, i<k\right\}$ to preserve the properties that $f(f(a))=a$ for all elements in this set. Moreover, $f\left(x_{2 k}\right)=x_{2 k+1}$ and $f\left(x_{k+1}\right)=x_{2 k}$, using the same reasoning above.. In the end, we only have one more element x_{n} left in A. We will always have one element left because A is odd, whereas we have hitherto only covered the elements of A in pairs. Using the same reasoning as above,
$f\left(x_{n}\right)$ cannot map to any other element in A, as then the criteria that $f\left(f\left(x_{n}\right)\right)=x_{n}$ would not be true. Therefore, since $f\left(x_{n}\right)$ must map to some element in A, but cannot map to any element in $A \backslash\left\{x_{n}\right\}, f\left(x_{n}\right)$ must be equal to x_{n}.

In the context of a ballroom dance, this means that in an odd group of people who are told to dance in pairs, such that if x dances with y then y must also dance with x, then one individual will be left utterly alone, without anyone else to dance with, except themselves.

Problem 7

Let $f(x)=x$ if x is rational and $f(x)=0$ if x is irrational. We will show that f is continuous at $x=0$ and nowhere else.

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at a point a if $\lim _{x \rightarrow a} f(x)=f(a)$. This means that if a function were continuous, then $\forall \epsilon_{\in \mathbb{R}^{+}}: \exists \delta_{\in \mathbb{R}^{+}}$such that $|f(x)-f(a)|<\epsilon$, for $0<|x-a|<\delta$. Let us consider an arbitrary $\epsilon \in \mathbb{R}^{+}$. To show that f is continuous at $a=0$, we would need to demonstrate that there exists some $\delta \in \mathbb{R}^{+}$such that $|f(x)-f(0)|=|f(x)|<\epsilon$ for $0<|x|<\delta$. Let $\delta=\epsilon / 2$. Then x is constrained to the interval $(0, \epsilon / 2) . f(x)$ will either be 0 if x is irrational and x if x is rational. If x is irrational, then $|f(x)|<\epsilon$ holds, as $0<\epsilon$. If x is rational, then $|f(x)|<\epsilon$ still holds, as $\epsilon / 2<\epsilon, \epsilon / 2$ being an upper bound on the possible value of x. Therefore, for all ϵ, there exists some δ (defined in terms of ϵ) such that for x where $0<|x|<\delta,|f(x)|<\epsilon$ holds. This demonstrates that f is continuous at $x=0$.

On the other hand, we need to show that f is discontinuous at nonzero a. That is, if a is not zero, f is not continuous. Consider an arbitrary $\epsilon \in \mathbb{R}^{+}$and $a \in \mathbb{R} \backslash\{0\}$. Suppose a is rational. Then, if f is continuous at $a, \forall \epsilon_{\in \mathbb{R}^{+}}: \exists \delta_{\in \mathbb{R}^{+}}$s.t. $|f(x)-a|<\epsilon$, for $0<|x-a|<\delta$. Suppose $\epsilon=|a / 2|$. Let δ be an arbitrary real positive number, and γ be a positive irrational less than δ. Then setting $x=a+\gamma$ satisfies $|(a+\gamma)-a|<\delta$. Because a rational added to an irrational is an irrational, $f(a+\gamma)=0$. Then, it does not hold that $\forall \epsilon_{\in \mathbb{R}^{+}}|0-a|<\epsilon$ for nonzero a, because there is no $\delta \in \mathbb{R}^{+}$such that the statement $|0-a|<\epsilon$ holds for $\epsilon=|a / 2|$, which is $|a|<|a / 2|$. Therefore, if a is rational and nonzero, f is not continuous at a.

Now, suppose a is irrational. If f is continuous at $a, \forall \epsilon_{\in \mathbb{R}^{+}}: \exists \delta_{\in \mathbb{R}^{+}}$s.t. $|f(x)|<\epsilon$, for $0<|x-a|<\delta$. Suppose again that $\epsilon=|a / 2|$, and δ be any positive real number. Let x be a nonzero rational number chosen from the interval $(a, a+\delta)$ if x is positive or $(a-\delta, a)$ if x is negative. Then the interval $0<|x-a|<\delta$ is necessarily satisfied, yet since $f(x)=x$ as x is rational and x is nonzero, $|f(x)|=|x|<\epsilon$ does not hold. Since $|a|=2 \epsilon$ and $x=a+\gamma$ where $0<\gamma<\delta,|f(x)|=|x|<\epsilon$ reduces to $2 \epsilon+\gamma<\epsilon$, which is clearly not true. As such, there is no value of δ such that for $0<|x-a|<\delta,|f(x)|<\epsilon$ holds for
$\epsilon=|a / 2|$. Therefore, if a is irrational and nonzero, f is not continuous at a. Hence, f is continuous at $x=0$ and discontinuous everywhere else.

