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Problem 1

Let Z,y € R"™ with & # 0 # . The Cauchy-Schwarz inequality implies (Z, %) < ||Z|| - ||¥/]|. Suppose we
have equality: (Z,y) = ||Z|| - ||7]]. We will show it follows that there exists some A € R such that 7 = \y.

Squaring both sides of (Z,7) = ||7]| - ||7]| gives us (Z,4)* = ||Z]|?||7]|*, which can be rewritten
as 0 = ||Z])*> — (&, 9)%/||y]>. Recall that in the proof of the Cauchy-Schwarz inequality, the function
f(t) = ||Z — ty]|* is minimized at ¢ = (Z, 3/) /||3/]|?, at which f(t) can be written as ||Z]|*> — (Z, 7)?/3/]|>.
Given that ||7]|? — (%, 7)%/]|5]* is the minimum of f (¢), and that ||Z]|? — (%, 7)?/]|5]* = 0, we conclude
that f((Z,9)/|171) = 17— (&, 9/|171) 7> = 0. If the norm of a vector is zero, then the vector
itself must be the zero vector. Therefore, we know that @ — ((Z,7)/||7]|*) ¥ = 0, or equivalently that

7 = ((Z,9)/||]|*)7. Therefore, there exists some A\ € R such that & = Ay, this A being (7, 7)/||7]|*. O

Problem 2
Proof 1
Let z,y € R™. Then, we will show that 2(||z||* + [|y||?) = ||z + y|* + ||= — y|*.
2=+ flyll*) = 2(z -2+ y - y) using [|a[|* = a - a
=(x-z+2z-y)+y-y+@ -2y +y-vy) adding cancellable terms

=z +yll>+|z—-y|*> O grouping / “un-distributing”



Proof 2

Let z,y € R™. Then, we will show that z - y = w.
1
I.y:Z.Zl(x.y)
1
=1 (2x -y +2x-y) separation
1
=1 (z-z+2z-y+y-y)—(x-x—2x-y+y-y)) adding cancellable terms
1 .
=1 (@+y)-(@+y) —(@-y) (z-y) grouping
2l 1|2
— Hx+yH 7 ||$ yH O usinga L= HaHQ
Problem 3

Suppose there are m vectors 1, ..., ,,, € R™ which satisty (z;,z;) = 0 for all i # j. We will show it

follows that || >, ;]| = Y0 |Ja||* with a proof by induction.

Our inductive proposition P(k) is that || Zle zi||* = Zle ||z;||>. We begin by showing the base case

P(1) holds. When k = 1, P(k) reduces to ||z;]|*> = ||z1||?, which is evidently true. Next, we will show

that supposing P(k) is true, P(k + 1) is necessarily true.

P(k) == ||og + ... + 2| = ||z + ..+ ||z

P(k+1) = flon+ o+ o+ zp | = [loa)* + o+ llaw]? + [Jaen]
Let us group the terms in P(k + 1) to separate x4, 1 from x4, ..., z.

Plk+1) <= |[(z1+ -+ 2) + 2 |* = ([ * + o+ [l2l®) + zpsall®
Using P(k), we can rewrite the first term of the LHS.

Pk+1) < |[(z1+ ... + z) + s |* = (llzn + o+ zil?) + |z

The norms can be rewritten as dot products, given that ||a||? = (a, a).

P(k+1) <= {((x1+...+2) +2pp1, (@1 + o+ 2) F 1) = (X1 + oo+ 2p, T+ o+ 20 + |20

We will distribute the dot product in the LHS:

<(;E1 + ...+ ZL’k) + Ty, (l’l + ...+ $k> -+ xk+1>

:<33’1 + .+ T, 1+ .+ $k> -+ 2<l’1 + ...+ $k,$k+1> + <$k+1,$k+1>
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At this point, the LHS and RHS of the equivalence statement share two terms, (1 + ... + Tg, 1 + ... + )
and (1, Tp41) (equivalently written as ||z 1]|%). Subtracting these terms from both sides (and dividing

both sides by 2) yields the following equation:

P(k‘—f— 1) — <IL’1 + ... +ZL’k,ZEk+1> =0

<~ (r1,2051) + ... + (T, 2p01) =0

From the premise, (z;,z;) = 0 for all ¢ # j. Therefore, every term on the LHS is zero. The resulting
expression, 0 = 0, is true. Therefore, P(k + 1) is true, provided that P(k) is true. Since P(k) implies
P(k + 1), and P(k) holds for all £ € N. (J

Problem 4

Given two real-valued functions on the unit interval f, g : [0,1] — R, the inner product is defined as
fo x)dxz. We will go through the proof of the Cauchy-Schwartz inequality and show that

every step still works using this notion of the inner product between two real-valued functions, ultimately

showing that ‘fol f(x) dx‘ < (fo 2dx> (fo de)l/Q.

To begin with, an inner product must be symmetric and bilinear. Firstly, fo (x)dx =
fo x)dx, which shows symmetry holds. Moreover, linearity is preserved: ( f g+h) = f g) ( f h).
In 1ntegrals, this is equivalent to stating that [ f(2)(g(z) + h(z))dz = [, f(z)g(x)dz + [, f(z)h(z)dz.

This is true because the integral itself is linear. Bilinearity follows trivially from symmetry and linearity.
If g(x) = 0, both sides of the inequality are zero. Otherwise, we introduce a real variable ¢ and consider a
function across functions ¢ quadraticint, q(t) = |f —tg|> = (f —tg, f —tg) = (f, [) =2t{f, g) +t*(g, g).

The minimum using the quadratic formula can be found at ¢t = H, which yields the value q(t) =

{(f: f) —

always yield a value of zero or positive value, ¢(t) = |f — tg]2 > 0. This means that the value at the

minimizing value of ¢ will also be greater than or equal to zero: (f, f) —

sides by (g, g) and rearranging yields (f, f) - {(g,9) > (f, )% Since {(a,a) = ||a||2, we can rewrite this as
I F112lgll* > (f, g)*. Taking the square root of both sides yields f,9) <1l Ngll- Rewriting this in terms

1/2
of the norm definition of the inner product yields ‘ fol f(x) dx‘ < < fo 2dx> ( fo 2dac> :

Therefore, all of the steps of Cauchy-Schwartz hold under the inner product across functions. [J
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Problem 5

Problem 5a.
We will show that, foralln € N, 13+ 23 + ... +n® = (1 + 2 + ... + n)? by induction.
Our inductive proposition P(k) is that 13 4+ 23 + ... + k* = (1 + 2 + ... + k)% The base case P(1)

holds: 12 = 12 = 1 = 1. Next, we will show that if P(k) is true, P(k + 1) is necessarily true.

Pk)=1"+2"+ . + Kk =1+2+..+k)?

Phk+1)=1+2+ .  +E+k+1)°=0+2+..+k+ (k+1))?
Expanding the RHS of P(k + 1) yields
(B+2B8+ 4+ +k+1P=0+2+ .. +k)*+20+2+ ..+ k) (k+ 1)+ (k+1)

By P(k), the first term of the RHS and the first term of the RHS are equivalent, and both can be subtracted

from the equation.

k+1P2=20+2+ ..+ k) (k+1)+ (k+1)°

We will endeavor in laborious algebra to prove the equality:

k+12=20+2+ ..+ k) (k+1)+ (k+1)?
:2(@) (k+1)+ Kk +2k+1

=k(k+1+k +k+1

= k(K> +2k+1)+ k> +2k+1
=42+ kP 2k 41
= k> +3k* + 3k + 1

= (k+1)*

Therefore, P(k) implies P(k + 1), and P(k) holds for all £ € N. [

Problem 5b.
We will show that a set {ay, as, ..., a, } has 2" subsets, of which 2"~! have an even number of elements
and 27! have an odd number of elements, using induction.

Our inductive proposition P(n) is that an arbitrary set of cardinality n has 2" subsets of which 2"~! have

an even cardinality and the other 2"! have an odd cardinality. We will show P(n) holds across n € N. In
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the base case P(1), for a set of size 1 {x; }, there are 2! subsets, the empty set () (even cardinality) and {z; }
(odd cardinality). There are 2! ! even cardinality subsets and 2! ~* odd cardinality subsets. Therefore, P(1)
holds. Next, we will show that P(k) implies P(k + 1). Suppose we have a set of cardinality k£ + 1. This
is equivalent to a set of cardinality k, {x;, 2o, ..., 7 } with an additional element x4 ;. By the inductive
proposition, the set of cardinality & has 2¢~1 subsets with an even cardinality and 2*~! subsets with an odd
cardinality. The set of all subsets of a cardinality-%£ + 1 set can be partitioned by the set of odd-cardinality
subsets and the set of even-cardinality subsets. In turn, each of these sets can be partitioned by the set
of odd/even-cardinality subsets including x;; and the set of odd/even-cardinality subsets not including
x1,.1. For each set with an even cardinality, we can add z;,,,. This generates 2! unique sets with an odd
cardinality, since adding one element to a set with even cardinality makes it odd. Likewise, for each set
with an odd cardinality, we can add x;,. This generates 2~! unique sets with an even cardinality. In
total, this yields 2¥~1 4- 28=1 = 2* odd-cardinality subsets and 2*~1 4 2¥=1 = 2* even-cardinality subsets.

We have shown that P(k) implies P(k + 1). Therefore, by induction, P(n) holds across n € Z*. [J

Problem 6

Let A be a finite set with an odd number of elements n. Assume furthermore that f : A — A is a function
satisfying f(f(a)) = a for all @ € Aa. We will show that there exists at least one element satisfying
f(a) = a.

Suppose A has only 1 element. Then it trivially follows that f(a) = a, because there is only one
possible term to map from and map to. Suppose A has more than 1 elements. Let x; be some element in A.
Let f(x1) = zo, for some 25 € A. Moreover, recall that f(f(x1)) = x; must be true, per the definition of
f. Then, we have that f(z,) = x;. Let 23 be an element in A distinct from both x; and z5. f(x3) cannot
have the same value as x5 — if this were the case, then f(f(z3)) = z1 # x3; likewise, f(z3) cannot be
equal to x4, as if this were the case, then f(f(x1)) = x2 # 3. Therefore, f(x3) must map to an element
of A distinct from either x; or x5. Call this element z4. Using the same reasoning as above, invoking
the property that f(f(a)) = a, we have that f(x3) = =4 and f(x4) = x3. In general, consider adding
distinct elements in pairs xoy, Tox41 for k € ZT U {0}. By the same reasoning above, both elements must
be distinct from all elements in {x; : ¢ € Z1,i < k} to preserve the properties that f(f(a)) = a for all
elements in this set. Moreover, f (o) = %oy 1 and f(xgy1) = xay, using the same reasoning above.. In
the end, we only have one more element x,, left in A. We will always have one element left because A is

odd, whereas we have hitherto only covered the elements of A in pairs. Using the same reasoning as above,
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f(z,,) cannot map to any other element in A, as then the criteria that f(f(z,)) = z,, would not be true.
Therefore, since f(x,) must map to some element in A, but cannot map to any element in A\ {z,}, f(x,)
must be equal to x,,. [J

In the context of a ballroom dance, this means that in an odd group of people who are told to dance in
pairs, such that if = dances with y then y must also dance with z, then one individual will be left utterly

alone, without anyone else to dance with, except themselves.

Problem 7

Let f(z) = x if x is rational and f(z) = 0 if z is irrational. We will show that f is continuous at z = 0
and nowhere else.

A function f : R — R is continuous at a point « if lim,_,, f(z) = f(a). This means that if a function
were continuous, then Vecp+ : Idcr+ such that | f(z) — f(a)| <€, for 0 < |z — a| < §. Let us consider an
arbitrary ¢ € R*. To show that f is continuous at a = 0, we would need to demonstrate that there exists
some 0 € R* such that |f(z) — f(0)] = |f(x)| < efor 0 < |z] < §. Let § = €/2. Then x is constrained
to the interval (0,¢/2). f(z) will either be 0 if x is irrational and x if x is rational. If z is irrational, then
|f(z)] < eholds, as 0 < e. If x is rational, then | f(z)| < € still holds, as €/2 < ¢, ¢/2 being an upper
bound on the possible value of x. Therefore, for all €, there exists some 0 (defined in terms of €) such that

for x where 0 < |z| < 0,

f(z)| < eholds. This demonstrates that f is continuous at z = 0.

On the other hand, we need to show that f is discontinuous at nonzero a. That is, if a is not zero, f
is not continuous. Consider an arbitrary ¢ € R and a € R\ {0}. Suppose a is rational. Then, if f is
continuous at a, Vecp+ : Fder+ s.t. | f(z) —a| < ¢, for 0 < |z — a|] < 6. Suppose € = |a/2|. Let 0 be an
arbitrary real positive number, and y be a positive irrational less than J. Then setting x = a + - satisfies
|(a+7) —a| < 4. Because a rational added to an irrational is an irrational, f(a + ) = 0. Then, it does not
hold that Vecr+|0 — a| < € for nonzero a, because there is no § € R such that the statement |0 — a| < ¢
holds for € = |a/2|, which is |a| < |a/2|. Therefore, if a is rational and nonzero, f is not continuous at a.

Now, suppose a is irrational. If f is continuous at a, Vecg+ : Idcg+ s.t. |f(x)] < ¢ for0 < |z —a| < 6.
Suppose again that e = |a/2|, and ¢ be any positive real number. Let x be a nonzero rational number chosen

from the interval (a, a + §) if z is positive or (a — §, a) if x is negative. Then the interval 0 < |x — a| < 0

is necessarily satisfied, yet since f(z) = x as x is rational and z is nonzero, |f(z)| = |z| < € does not
hold. Since |a| = 2c¢and x = a + v where 0 < v < 4, | f(z)| = |z| < € reduces to 2¢ + v < ¢, which

is clearly not true. As such, there is no value of ¢ such that for 0 < |z — a| < 4, |f(x)| < € holds for
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€ = |a/2|. Therefore, if a is irrational and nonzero, f is not continuous at a. Hence, f is continuous at

x = 0 and discontinuous everywhere else. [
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