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Problem 18.4

Question: These graphs represent periodic functions. Describe the period in each case.

Solution: From left to right, top to bottom:

• The period is the “diameter” of one semicircle.

• The period is the horizontal length one “dumbbell”/line segment occupies.

• The period is the horizontal length from initial medium zag down to big zag up to biggest zag down to big zag up.

• The period is the “diameter” of one semicircle multiplied by 4.

• The period is the horizontal length of one line segment multiplied by 2.

Problem 19.7

Context: The voltage output(in volts) of an electrical circuit at time t seconds is given by the function

V (t) = 23 sin(5πt−3π)+1

Part A Question: What is the initial voltage output of the circuit?

Part A Solution: The initial voltage occurs at time t = 0, yielding the expression V (t) = 23 sin(−3π)+1. Since
sin(−3π) = 0, the expression is equivalent to 21, which equals 1. The initial voltage output of the circuit is thus 2 volts.

Part B Question: Is the voltage output of the circuit ever equal to zero? Explain.

Part B Solution: No.

23 sin(5πt−3π)+1 = 0

3 sin(5πt− 3π) + 1 = log2(0)

log2(0) is undefined, and therefore the equation cannot be solved.

Part C Question: The function V (t) = 2p(t), where p(t) = 3 sin(5πt − 3π) + 1. Put the sinusoidal function p(t) in
standard form and sketch the graph for 0 ≤ t ≤ 1. Label the coordinates of the extrema on the graph.

Part C Solution: 3 sin (5πt− 3π) + 1 can be written in standard form as 3 sin
(

2π
2
5

(
t− 3

5

))
+ 1. The minima and

maxima are located at 1 − 3 and 1 + 3, yielding −2 and 4, respectively. The period is 2π
5 , meaning that one maximum

of the unshifted sinusoidal is located at x =
2
5

4 = 0.1. After a shift of three-fifths right, this maximum is located now at
0.7. All maxima can be found by adding or abstracting multiples of the period, yielding 0.7, 0.3, etc. The minima can be
found in-between adjacent maxima.
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Part D Question: Calculate the maximum and minimum voltage output of the circuit.

Part D Solution: The maximum value of an “untouched” sine function is 1. When the amplitude is multiplied by
three and the graph is shifted upwards 1, the maximum value becomes 1 · 3 + 1 = 4 volts. Likewise, the minimum value
is −1 · 3 + 1 = −2 volts. Exponentiating these yields a range of 1

2 ≤ V (t) ≤ 16.

Part E Question: During the first second, determine when the voltage output of the circuit is 10 volts.

Part E Solution:

23 sin(5πt−3π)+1 = 10

3 sin (5πt− 3π) + 1 = log2 (10)

sin (5πt− 3π) =
log2 (10)− 1

3

5πt− 3π = arcsin

(
log2 (10)− 1

3

)
+ 2πn or π − arcsin

(
log2 (10)− 1

3

)
+ 2πn

t =
arcsin

(
log2(10)−1

3

)
+ 2πn+ 3π

5π
or

π − arcsin
(

log2(10)−1
3

)
+ 2πn+ 3π

5π

We have the following solutions by using different values of n for times t at which the voltage output is 10 volts with the
constraint 0 ≤ t ≤ 1:

•
arcsin

(
log2(10)−1

3

)
+2π(−1)+3π

5π ≈ 0.25634.

•
arcsin

(
log2(10)−1

3

)
+2π(0) + 3π

5π ≈ 0.65634.

•
π−arcsin

(
log2(10)−1

3

)
+2π(−1) + 3π

5π ≈ 0.34365.

•
π−arcsin

(
log2(10)−1

3

)
+2π(0) + 3π

5π ≈ 0.74365.

Thus, the four solutions are at 0.27, 0.34, 0.66, and 0.74 seconds.

Part F Problem: A picture of the graph of y = V (t) on the domain 0 ≤ t ≤ 1 is given; label the coordinates of the
extrema on the graph.

Part F Solution: The maxima and minima of 3 sin
(

2π
2
5

(
x− 3

5

))
+1 were found in part C. Since 2x is a monotonically

increasing function, the maxima and minima of f(x) will also be the maxima and minima of 2f(x). Thus, the maxima of
V (t) is 24 = 16, and the minima is 2−2 = 1

4 . These are located at 0.3 + 0.2k and 0.1 + 0.2k, respectively.
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Part G Problem: Restrict the function V (t) to the domain 0.1 ≤ t ≤ 0.3; explain why this function has an inverse
and find the formula for the inverse rule. Restrict the function V (t) to the domain 0.3 ≤ t ≤ 0.5; explain why this function
has an inverse and find the formula for the inverse rule.

Part G Solution: The segment of V (t) from 0.1 ≤ t ≤ 0.3 is one-to-one, and thus there exists an inverse function
for it. Likewise, the segment of V (t) from 0.3 ≤ t ≤ 0.5 is one-to-one, and there exists an inverse function for it.

23 sin(5πy−3π)+1 = t

3 sin(5πy − 3π) + 1 = log2 (t)

sin(5πy − 3π) =
log2 (t)− 1

3

5πy − 3π = arcsin

(
log2 (t)− 1

3

)
+ 2πn or π − arcsin

(
log2 (t)− 1

3

)
+ 2πn

y =
arcsin

(
log2(x)−1

3

)
+ 2πn+ 3π

5π
or

π − arcsin
(

log2(x)−1
3

)
+ 2πn+ 3π

5π

We can test which solution is returned by setting x to some value between the minimum and maximum y-values of

the sinusoidal, like 5. Using n = 0,
arcsin

(
log2(5)−1

3

)
+2πn+3π

5π ≈ 0.62904. This suggests that the inverse function with n = 0
is the inverse of the sinusoidal with domain restricted to 0.5 ≤ t ≤ 0.7. Subtracting 2π by setting n = −1 will thus return

the inverse for the domain 0.1 ≤ t ≤ 0.3. We can confirm this:
arcsin

(
log2(5)−1

3

)
+2π(−1)+3π

5π ≈ 0.22904. Since the domain
range 0.3 ≤ t ≤ 0.5 is on the down-sloping side, we will need to use the second arcsine solution (π − arcsin (. . . ) + 2πn).

Since this solution is right-adjacent to the prior one, n = −1. Thus,
π−arcsin

(
log2(x)−1

3

)
+3π

5π is the inverse of the sinusoidal

from range 0.3 ≤ t ≤ 0.5. We can confirm this:
π−arcsin

(
log2(5)−1

3

)
+2π(−1)+3π

5π ≈ 0.37095.

Thus, the inverse of V (t){0.1 ≤ t ≤ 0.3} is
arcsin

(
log2(x)−1

3

)
+π

5π and the inverse of V (t){0.3 ≤ t ≤ 0.5} is
− arcsin

(
log2(x)−1

3

)
+2π

5π .

Problem 20.1

Part C Problem: Find four values of x that satisfy the equation 5 sin
(
2x2 + x+ 1

)
= 2.
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Part C Solution:

5 sin
(
2x2 + x+ 1

)
= 2

sin
(
2x2 + x+ 1

)
=

2

5

2x2 + x+ 1 = arcsin

(
2

5

)
+ 2πn

Following one possibility, in which n = 0:

2x2 + x+ 1 = arcsin

(
2

5

)
2x2 + x+ 1− arcsin

(
2

5

)
= 0

x =
−1±

√
1− 4(2)

(
1− arcsin

(
2
5

))
2(2)

x =
−1±

√
8 arcsin

(
2
5

)
− 7

4

Following another possibility, in which n = 1:

2x2 + x+ 1 = arcsin

(
2

5

)
+ 2π

2x2 + x+ 1− arcsin

(
2

5

)
− 2π = 0

x =
−1±

√
1− 4(2)

(
1− arcsin

(
2
5

))
− 2π

2(2)

x =
−1±

√
8 arcsin

(
2
5

)
− 7− 2π

4

Thus, four solutions are x =
−1±

√
8 arcsin( 2

5 )−7

4 and x =
−1±

√
8 arcsin( 2

5 )−7−2π

4 .

Problem 20.4

Context: Hugo bakes world famous scones. The key to his success is a special oven whose temperature varies according
to a sinusoidal function; assume the temperature (in degrees Fahrenheit) of the oven t minutes after inserting the scones
is given by

y = s(t) = 15 sin

(
π

5
t− 3π

2

)
+ 415

Part A Problem: Find the amplitude, phase shift, period and mean for s(t) then sketch the graph on the domain
0 ≤ t ≤ 20.

Part A Solution: Rewriting yields s(t) = 15 sin
(
π
5

(
t− 15

2

))
+415 = y = 15 sin

(
2π
10

(
t− 15

2

))
+415. Correspondingly,

we can find that:

• ...the amplitude is 15 degrees

• ...the mean is 415 degrees

• ...the period is 10 minutes

• ...the phase shift is 15
2 minutes
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Part B Problem: What is the maximum temperature of the oven? Give all times when the oven achieves this
maximum temperature during the first 20 minutes.

Part B Solution: The maximum temperature is the mean plus the amplitude, or 430 degrees. If the sinusoidal were
not shifted, the first maximum would have occurred at t = 10

4 = 2.5 minutes. Because the sinusoidal has been shifted
rightward 15

2 minutes, the maximum is now at 10 minutes. Subtracting and adding multiples of the period yield maximums
in the first 20 minutes at t = 0, 10, 20.

Part C Problem: What is the minimum temperature of the oven? Give all times when the oven achieves this
minimum temperature during the first 20 minutes.

Part C Solution: The minimum temperature can be found by subtracting the amplitude from the mean, which yields
415 − 15 = 400◦F The minimum temperatures are located in between adjacent minimum temperatures x − axis-wise.
Once a solution for minimum temperatures is found, the others can be found by adding or subracting multiples of the
period. Hence, the minimum temperatures occur during the first 20 minutes at t = 5, 10.

Part D Problem: During the first 20 minutes of baking, calculate the total amount of time the oven temperature is
at least 410◦F.

Part D Solution: We can find the time 0 < t < 5 at which s(t) = 410 and quadruple the quantity to arrive at the
answer. We can do this because, conveniently, there exists two “humped” areas within the domain 0 ≤ t ≤ 20 (albeit one
is split in half across the two ends).

15 sin

(
2π

10

(
t− 15

2

))
+ 415 = 410

sin

(
2π

10

(
t− 15

2

))
= −1

3

2π

10

(
t− 15

2

)
= π − arcsin

(
−1

3

)
+ 2πn

t =
5
(
π − arcsin

(
− 1

3

)
+ 2πn

)
π

+
15

2

Note that we use π − arcsin(. . . ) rather than arcsin(. . . ) because the solution in the domain we want falls on the left side
of a circle (when visualization the sine curve as movement around it). Using n = −1 yields a result that satisfies our
domain constraint, and we have that t = 3.04086. Multiplying by 4 yields a total time when the oven temperature is at
least 410 degrees Fahrenheit of ≈ 12.16346 minutes.

Part E Problem: During the first 20 minutes of baking, calculate the total amount of time the oven temperature is
at most 425◦F.
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Part E Solution: Like in Part D, we can find the time 0 ≤ t ≤ 5 where s(t) = 425. However, the solution will be
20− 4t, since the problem asks for the time in which the temperature is less than or equal to 425 degrees. The logic for
multiplying the time by 4 is the same as in Part D; so is the logic for using π − arcsin(. . . ) rather than arcsin(. . . ).

15 sin

(
2π

10

(
t− 15

2

))
+ 415 = 425

sin

(
2π

10

(
t− 15

2

))
=

2

3

2π

10

(
t− 15

2

)
= π − arcsin

(
2

3

)
+ 2πn

t =
5
(
π − arcsin

(
2
3

)
+ 2πn

)
π

+
15

2

Using n = −1 yields t ≈ 1.33860 minutes. Substituting into 20 − 4t yields a total time the oven temperature is at most
425 degrees Fahrenheit of 14.64559 minutes.

Part F Problem: During the first 20 minutes of baking, calculate the total amount of time the oven temperature is
between 410 degrees and 425 degrees.

Part F Solution: We found in Parts D and E that

s(3.04086) = 410

s(1.33860) = 425

The time in which the temperature is between 410 degrees and 425 degrees is 3.04086 − 1.33860 = 1.70226. Multiplying
this by 4 (a visual inspection of the graph demonstrates that this curved portion occurs four times from 0 ≤ t ≤ 20) yields
6.80904 minutes.

Problem 20.5

Problem: The temperature in Gavin’s oven is a sinusoidal function of time. Gavin sets his oven so that it has a
maximum temperature of 300 degrees F and a minimum temperature of 240 degrees. Once the temperature hits 300
degrees, it takes 20 minutes before it is 300 degrees again. Gavin’s cake needs to be in the oven for 30 minutes at
temperatures at or above 280 degrees. He puts the cake into the oven when it is at 270 degrees and rising. How long will
Gavin need to leave the cake in the oven?

Solution: We can write a sinusoidal for Gavin’s oven (phase shift is arbitrary):

o(x) = 30 sin

(
2π

20
x

)
+ 270

Gavin puts in the cake when it is at 270 degrees and rising. This, conveniently, is the mean, which means that the value
of x at which o(x) = 270 is the average of the values of x such that o(x) = 240 and o(x) = 300 (the minimum and
maximum outputs of o(x)), given that they are adjacent. Reasoning this out from the shape of the constructed sinusoidal,
one minimum occurs at xmin = 0− 20

4 = −5 and the other at xmax = 0 + 20
4 = 5. These two are adjacent and xmin < xmax

(the temperature is “on the rise” at values in between xmin and xmax). Thus, at value x = 0, o(x) = 270.
Next, we must find the time at which Gavin’s oven reaches 280 degrees.

30 sin

(
2π

20
x

)
+ 270 = 280

sin
( π

10
x
)

=
1

3
π

10
x = arcsin

(
1

3

)
+ 2πn

x =
10
(
arcsin

(
1
3

)
+ 2πn

)
π

Note that we used arcsin
(
1
3

)
and not π− arcsin

(
1
3

)
because we are concerned with solutions at which the temperature is

rising. Using n = 0 yields x ≈ 1.08173, which satisfies the condition 0 < x < 5 (the oven should reach 280 degrees after it
reaches 270 degrees, but before it reaches 300 degrees).
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We can find the interval of time at which Gavin’s oven, within the length of one period, is at or over 280 degrees.
We know that the oven’s temperature is over 270 degrees for 1

2 the period, or 10 minutes. Moreover, this interval of 10
minutes is positioned “symmetrically” around the symmetric “bump” of the sinusoidal. Within this 10-minute interval, at
≈ 1.08173 minutes the oven rose above 280 degrees. This means that at ≈ 10−1.08173 minutes the oven will fall back below
280 degrees. Thus, within one period, the oven’s temperature is at or above 280 degrees for ≈ 10− 2(1.08173) = 7.83654
minutes.

Gavin needs his cake to be in the oven for at least 30 minutes, which means his cake should be in the oven for at
least floor

(
30

7.83654

)
= 3 cycles. A complete cycle takes 20 minutes, meaning that the cake is in the oven for at least

20 · 3 = 60 minutes. After he completes 3 cycles, the cake has been baking at a temperature of 280 degrees or higher for
3 · 7.83654 = 23.50962 minutes, meaning it needs to bake for 30 − 23.50962 = 6.49038 more minutes at 280 degrees or
higher after 3 cycles. However, we need to add 1.08173 minutes to account for the discrepancy between the temperature
of the end of the 3 cycles (at 270 degrees) and the temperature at which Gavin’s cake needs 6.49038 more minutes (at 280
degrees). In total, Gavin’s cake takes 60 + 1.08173 + 6.49038 = 67.57 minutes in the oven.

Additional Problem

Problem: In the spreadsheet, the high temperatures in Seattle are recorded for every six hours during the week
5/1-5/7. Find (a) a best-fit sinusoidal under the assumption that the period of the temperature is 1 and that 12:00 AM on
5/1 was a minimum; and (b) a best-fit sinusoidal under the assumption that the mean is correct and that the amplitude
is the furthest the data gets from the mean. (c) Compare the accuracy of the two models.

Solution: First, the dates were transformed such that 5/1 12:00 AM corresponded with 0, 5/1 6:00 AM corresponded
with 1

4 , 5/1 12:00 PM corresponded with 1
2 , 5/1 6:00 PM corresponded with 3

4 , 5/2 12:00 AM corresponded with 1, and
so on.

Assuming that the period of the temperature is 1 (presumably, 1 day) and that 12:00 AM on 5/1 is the minimum, we
can use the following sinusoidal:

A sin

(
2π

1

(
x− 1

4

))
+D

The phase shift right of one-fourth the period positions the sinusoidal such that at time “0” the model returns the minimum.
The best-fit sinusoidal, after transforming the independent variable with t(x) = 2π

(
x− 1

4

)
, yields A ≈ 4.714285714 and

D ≈ 56.32142857. The best-fit sinusoidal under these assumptions is thus

4.714 sin

(
2π

1

(
x− 1

4

))
+ 56.321

.
Assuming that the mean is correct and the amplitude is furthest the data gets from the mean, we have D = ȳ ≈ 56.3214

and A = max (|y − ȳ|) ≈ 10.3214. We can use the following sinusoidal framework:

10.3214 sin (B (x− C)) + 56.3214

The transformation t(x) = arcsin
(
x−56.3214
10.3214

)
was first performed. Then, the following transformation was applied with

the following procedure:

1. Locate the current row number n, beginning at zero, and the row value v.

2. Calculate np = floor
(
n
2

)
.

3. If mod (n, 2) = 0, return v + np · 2π.

4. If mod (n, 2) = 1, return π − v + np · 2π.

The resulting line of best fit calculation yielded a slope of 12.5961 and a y-intercept of −0.11223. Thus, the best-fit
sinusoidal under this set of assumptions is

10.3214 sin (12.5961 (x− 0.11223)) + 56.3214

The RMSE of the first model is 3.8124, whereas the latter’s is 10.8826. The first model is much better than the latter.
When inspecting the data and model predictions visually, it is clear that setting the amplitude as the furthest the data
gets from the mean in the second model yields an amplitude much too wide to handle most of the data. The assumptions
in the first model on the phase shift and the period are prone, of course, to some error, but were reasonable enough and
not quite as significant in terms of RMSE to model performance than overshooting the amplitude.
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