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Problem 1

Context: Construct the line of best fit for each of the following sets of points, compute the R2 and adjusted R2
values, and comment on the quality of the fit. You don’t need to apply an F-test.

Part A Problem: (0, 0), (1, 3), (2, 2), (4, 6)

Part A Solution: The formula for a linear regression model f(x) = mx + b is given by:

m =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2

b = ȳ −mx̄

Let us calculate the means first; xi = 0+1+2+4
4 = 7

4 = 1.75 and yi = 0+3+2+6
4 = 11

4 = 2.75. We can then calculate m:

m =
(0 − 1.75)(0 − 2.75) + (1 − 1.75)(3 − 2.75) + (2 − 1.75)(2 − 2.75) + (4 − 1.75)(6 − 2.75)

(0 − 1.75)2 + (1 − 1.75)2 + (2 − 1.75)2 + (4 − 1.75)2
=

11.75

8.75
≈ 1.34285

We can find b as 11
4 − 11.75

8.75

(
7
4

)
= 2.75 − 2.35 = 0.4. The line of best fit is thus approximately y = 1.34285x + 0.4.

The R2 score is given by R2 = 1 −
∑

(yi−f(xi))
2∑

(yi−ȳ)2 . The denominator can be calculated as follows:∑
(yi − ȳ)2 = (2.75 − 0)2 + (2.75 − 3)2 + (2.75 − 2)2 + (2.75 − 6)2 = 18.75

The numerator can be calculated as follows:∑
(yi − f(xi))

2 = (0 − f(0))2 + (3 − f(1))2 + (2 − f(2))2 + (6 − f(4))2

∑
(yi − f(xi))

2 = (0 − 0.4)2 + (3 − 1.74285714)2 + (2 − 3.08571429)2 + (6 − 5.77142857)2 ≈ 2.97142

The denominator can be calculated as follows:∑
(yi − ȳ)2 = (0 − 2.75)2 + (3 − 2.75)2 + (2 − 2.75)2 + (6 − 2.75)2 = 18.75

Plugging these into the R2 score formula yields 1− 2.97142
18.75 ≈ 0.84152. Using this R2 score in the adjusted R2 formula,

1 − (1 −R2)n−1
n−3 , yields 1 − (1 − 0.84152) 4−1

4−3 = 0.52456.
This line of fit performs pretty well on the data, although there is not enough data.

Part B Problem: (0, 1), (2, 1), (3, 2), (4, 1), (5, 3), (6, 4)

Part B Solution: Using the same formula and process as outlined above, we can calculate the line of best fit. m
evaluates to 11

23.3333 ≈ 0.47142. b is thus approximately 0.4286. The line of best fit is thus y = 0.47142x + 0.4286. The
numerator of the R2 score evaluates to 2.8143; the denominator of the R2 score evaluates to 8 (referring to the second
term of the R2 score, ignoring the “1−”). The R2 score is thus 0.64821. To calculate the adjusted R2, 1 − 0.64821 is
multiplied by 1.6667; this quantity is subtracted from 1 to yield an adjusted R2 of 0.41369. This line’s fit is mediocre.

Part C Problem: (0, 1), (1, 3), (2, 5), (3, 7), (4, 9)

Part C Solution: Using the same formula and process as outlined above, we can calculate the line of best fit. m
evaluates to 20

10 = 2. b is thus equal to 1. The line of best fit is thus y = 2x + 1. The numerator of the R2 score evaluates
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to 0, meaning that the model predicts every point perfectly. The R2 score is thus 1. The adjusted R2 score is irrelevant
when the R2 score is also 1, since the (1−R2)n−1

n−3 term evaluates to 0 when R2 = 1. This line is a perfect fit for the data.

Part D Problem: (0, 2), (1, -1), (4, 3), (5, -6), (7, 0), (8, 2)

Part D Solution: Using the same formula and process as outlined above, we can calculate the line of best fit. m
evaluates to −3

50.83333 ≈ −0.05901. b is thus approximately 0.245902. The line of best fit is thus y = −0.05901x+ 0.245902.
The numerator of the R2 score evaluates to 53.82295; the denominator evaluates to 54. The R2 is hence 0.003279.
Multiplying 1−0.003279 by 1.6667 and subtracting the result from 1 yields an adjusted R2 of −0.6612. This line performs
very poorly on the dataset; it is barely better than a constant model that guesses the average. When the dataset size is
taken into account with the R2, we see that this predictor negatively impacts the prediction so much that the adjusted-R2
becomes negative.

Part E Problem: (0, 2), (3, 5)

Part E Solution: Given only two points, the best line of fit is the one that passes through them. The line is thus
y = x + 2. Since the line passes through all the data points in the dataset, the R2 and adjusted R2 are both equal to 1.
This is to be expected, since a linear model will always perfectly model two points. As such, it does not make sense to
use the R2 as a comparative metric.

Problem 2

Context: Suppose that the line of best fit for a certain set of data is y = 2x− 1, and the R2 for this model is 0.8.

Part A Problem: If 1 were added to all of the y-coordinates of the data, what would the new line of best fit be?
Can you predict what the new R2 would be?

Part A Solution: All the data has shifted up one unit, so the line of best fit would be shifted up one unit. This
yields a new best fit line of y = 2x.

The equation for R2 was 1 −
∑

(yi−2xi+1))2∑
(yi−ȳ)2 . Adding 1 to the y-coordinates of the data and updating the line of best

fit would yield the following result:

1 −
∑

(yi + 1 − 2xi)
2∑

(yi + 1 − ȳ − 1)2

Note that ȳ still represents the mean of the y-values prior to adding 1; we have simply expressed the new mean as ȳ + 1.

We can prove the truth of this step as follows: ȳ =
∑

yi

N . Adding 1 to the elements yields
∑

yi+1
N . Using the commutative

property of addition, this can be distributed as
∑

yi

N +
∑

1
N . The latter term

∑
1

N equals 1 because there are
∑

1 = N .

The expression
∑

yi

N +
∑

1
N simplifies to ȳ + 1.

Thus, we can prove that the R2 prior to and after adding 1 to each yi term is the same:

1 −
∑

(yi − 2xi + 1))2∑
(yi − ȳ)2

= 1 −
∑

(yi + 1 − 2xi)
2∑

(yi + 1 − ȳ − 1)2

= 1 −
∑

(yi − 2xi + 1)2∑
(yi − ȳ)2

Therefore, the R2 remains the same, at 0.8.

Part B Problem: If 1 were added to all of the x-coordinates of the data, what would the new line of best fit be?
Can you predict what the new R2 would be?

Part B Solution: Since all the data shifts 1 unit to the right, the line of best fit also does; this yields 2(x− 1) − 1 =
2x− 3. The line of best fit for this dataset is thus y = 2x− 3.

The equation for R2 was 1 −
∑

(yi−2xi+1))2∑
(yi−ȳ)2 . After adding 1 to each x-term, the R2 becomes 1 −

∑
(yi−2(xi+1)))2∑

(yi−ȳ)2 =

1 −
∑

(yi−2(xi+1)+3))2∑
(yi−ȳ)2 = 1 −

∑
(yi−2xi+1))2∑

(yi−ȳ)2 . Since the R2 remains the same, the R2 remains the same, at 0.8.

Part C Problem: If all of the y-coordinates of the data were doubled, what would the new line of best fit be? Can
you predict what the new R2 would be?
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Part C Solution: Since all the y-coordinates have doubled, the model’s output should have doubled too. Thus yields
2(2x− 1) = 4x− 2. The line of best fit for this dataset is thus y = 4x− 2.

The equation for R2 was 1 −
∑

(yi−2xi+1))2∑
(yi−ȳ)2 . After doubling each y element, the R2 becomes 1 −

∑
(2yi−4xi+2))2∑

(2yi−2ȳ)2 .

As in part A, ȳ refers to the mean of the y-coordinates prior to being doubled. Doubling the coordinates is equivalent

to doubling the mean. We can prove this as follows: ȳ =
∑

yi

N . Doubling each element yields
∑

2yi

N . Per the distributive

property, this can be rewritten as 2
∑

yi

N = 2ȳ.
We can prove that the R2 prior to and after doubling each yi term is the same:

1 −
∑

(yi − 2xi + 1))2∑
(yi − ȳ)2

= 1 −
∑

(2yi − 4xi + 2))2∑
(2yi − 2ȳ)2

= 1 − 4
∑

(yi − 2xi + 1))2

4
∑

(yi − ȳ)2

= 1 −
∑

(yi − 2xi + 1))2∑
(yi − ȳ)2

Since the R2 remains the same, the R2 remains the same, at 0.8.

Part D Problem: If all of the x-coordinates of the data were doubled, what would the new line of best fit be? Can
you predict what the new R2 would be?

Part D Solution: Since all the x-coordinates have doubled, the model would need to be stretched horizontally by a
factor of 2: 2

(
1
2x
)
− 1 = x− 1. The line of best fit for this model is thus y = x− 1.

The equation for R2 was 1 −
∑

(yi−2xi+1))2∑
(yi−ȳ)2 . After doubling each x element, the R2 becomes 1 −

∑
(yi−(2xi)+1))2∑

(yi−ȳ)2 .

Since the R2 remains the same, the R2 remains the same, at 0.8.

Part E Problem: If all of the y-coordinates of the data were squared, can you predict what the new line of best fit
would be? Can you predict what the new R2 would be?

Part E Solution: The slope of the line of best fit is given by m =
∑

(xi−x̄)(yi−ȳ)∑
(xi−x̄)2 . That is, finding the line of best fit

requires knowing the mean of the data after its elements are squared. This is impossible to do, given only the mean of
the data prior to its elements being squared. Thus, we do not know the line of best fit. Correspondingly, we do not know
the new R2 because the R2 is dependent on knowing the line of best fit.

Problem 3

Problem: Laverne, Gordon, and Tanya are trying to model the price of gas per gallon in their city. Each of them
tries a slightly different approach.

• Laverne constructs a line of best fit for the data and performs an F-test. She gets an R2 of about 0.02 and an F-score
of 2.04, and based on that she decides that we can’t conclude anything with 90% confidence or better.

• Gordon takes Laverne’s results to mean that we can’t accurately model gas prices with just one line, so he tries a
multipart linear model. He tries a whole bunch of different options, and eventually comes up with a five-part linear
model which has an R2 of 0.99, and an F-score of nearly 10,000.

• Tanya recalls from the news that, at a certain point during the period of time they have data on, a toll was added
to one of the major highways in the area. She hypothesizes that the toll may have changed people’s driving habits
and therefore changed the demand for gas, so she breaks up the data into “before the toll” and “after the toll” data
sets, and constructs lines of best fit for each one, resulting in a two-part linear model. Her model has an R2 of 0.76,
and the F-scores of the pieces are 27 and 660, respectively.

Rank these three approaches from “most trustworthy” to “least trustworthy”, and from “most successful” to “least
successful”. As always, explain your reasoning.

Solution: In determining which of the three people are the most “trustworthy”, we will need to define what “trust-
worthiness” entails. For the purposes of this question, we will define “trustworthy” as “well-represents the truth of the
problem as a whole”. For example, in an extreme case, we could have a multipart linear function with N − 1 lines for a
dataset with N points. The metrics would point to a great model, but because the model is high-variance, it is difficult
to trust these as well-representing the truth of a model in predicting the phenomena of gas prices and not just the given
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set of data points. The trustworthiness is then simply a ranking of how variant the models are; Laverne’s is one piece,
Tanya’s is two pieces, and Gordon’s is five pieces. The approaches ranked from most trustworthy to least trustworthy are
thus Laverne’s, Tanya’s, and Gordon’s.

To make more concrete the notion of “success”, we will define the “success” of an approach by how well it will perform
in modelling the phenomenon. While some of this analysis will borrow from the metrics of how well the model fits the
data, we also need to consider the variance of the model. While Laverne’s model is very trustworthy, it likely wouldn’t
do well in modelling the price of gas. Gordon’s model is very untrustworthy; it is high-variance and the R2 is “too high”
given the nature of the model; Gordon’s model is likely over-fitting to the current data and will not perform well on new
gas price data. On the other hand, Tanya’s model seems to be complex enough to model the phenomena well without
being so high-variance that it overfits to the data. Thus, Tanya clearly has had the most success. The ranking of least
successful, then, depends on whether we consider Gordon or Laverne’s endeavors to be more likely to model the phenomena
successfully. To answer this question rigorously would require understanding the nature of the problem – assuming that
it is a forecasting problem, it seems that Laverne’s model would be more successful at modelling new data, since the line
is the “product” of considering all the data, rather than only one subset, as Gordon’s model does. Thus, the approaches
ranked from most successful to least successful are Tanya’s, Laverne’s, and Gordon’s.

Problem 4

Problem: According to the Washington Post, the total number of new COVID-19 cases reported in the US each day
of the final week of March 2021 was as follows:

Date Cases

3/25 66,740
3/26 76,242
3/27 66,826
3/28 45,728
3/29 66,429
3/30 61,907
3/31 69,216

By constructing a best-fit line for this data, can we conclude with 95% confidence that the number of cases was
increasing, decreasing, or neither during that time?

Solution: Firstly, let us change the date into “Days since 3/25” so it can be modelled by a mathematical model:

Days Since 3/25 Cases

0 66,740
1 76,242
2 66,826
3 45,728
4 66,429
5 61,907
6 69,216

We can use the same process as outlined in Problem 1 to find the best line of fit. The numerator for m evaluates to about
−21639; the denominator evaluates to 28. Therefore, the resulting slope of the best line of fit is about −772.8214. The
y-intercept can be correspondingly calculated to be 67,240.958. The line of best fit is thus y = −772.8214x + 67, 240.958.

Using the line of best fit, we can calculate the R2; the numerator evaluates to ≈ 516292437.9643 and the denominator
evaluates to ≈ 533015520.8571. Dividing and subtracting from 1 yields an R2 score of 0.0314. The F-score is thus

0.0314
1−0.0314 (7 − 2) = 0.16208. The F-test value for 95% confidence with a sample size of 7 is 5.59; the F score of the line of
best fit falls far from this. Thus, we cannot conclude whether the number of cases was decreasing or increasing – at least
in a linear sense.

Problem 5

Problem: Again According to the Washington Post, the total number of new COVID-19 cases reported in the US
each day from Jan. 13 2021 to Jan. 31 2021 was as follows: [table omitted]

By constructing a best-fit line for this data, can we conclude with 95% confidence that the number of cases was
increasing, decreasing, or neither during that time?
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Solution: Substituting the date as the independent variable for “number of days since 1/13”, we can construct a line of
best fit. The numerator for the slope evaluates to −2, 805, 000 and the denominator evaluates to 570; dividing yields a slope
of −4921.0526. The y-intercept is correspondingly 219578.6316. The line of best fit is thus y = −4921.0526x+219578.6316.
To calculate the R2, we find the numerator to be 8212330914.9474 and the denominator to be 22015883546.5263; dividing
and subtracting from 1 yields an R2 of about 0.6270. The F-score is thus 0.627

1−0.627 (19 − 2) = 28.5764. The F-test value
for 95% confidence with a sample size of 20 is 4.35; the F-score for our model far surpasses this. Given that the slope is
negative, we can conclude with 95% confidence that the number of cases was decreasing.

Problem 6

Problem: Take a look at the epidemic simulator linked in the description. Run it a few times to get a feel for
how it works and what it does. Then, based on your observations and the data provided by the simulator, construct
statistically justified models of the number of infected individuals and the number of recovered individuals over time.
Finally, (rigorously) test your model against another run of the simulator, and analyze the model’s performance. The
simulator allows you to adjust particular parameters; feel free to leave it on the defaults, or to experiment with other
options. If you experiment, choose a set of parameters with nontrivial results – the simulation should last at least 500
frames.

Solution: We will set the infection rate at 0.01, the infection strength at 90, and the infection persistence at 0.7. We
collect the following data:

Frame Infected Recovered

0 1 0
100 29 0
200 143 0
300 439 2
400 1010 31
500 1615 161
600 2377 448
700 3064 1048
800 3899 1803
900 4638 2878
1000 5397 4164
1100 5994 5789
1200 6558 7592
1300 7188 9647
1400 8039 11844
1500 8060 14263
1600 6809 16958
1700 4707 19945
1800 2935 22315
1900 1728 23758
2000 910 24667
2100 343 25257
2200 116 25484
2300 21 25579
2400 1 25599

Interestingly, we can observe two patterns that may be useful: the number of infected people seems to be symmetric in
that it rises and then falls. The number of recovered people seems to increase steadily, although faster in the middle and
slower near the beginning and ending frames.

Let us first attempt to model the number of infected people. For the sake of simplicity, let our model consist of
two lines modelling frames 0-1400 and 1500-2400. The former should model the up-sloping trend of number of infected
individuals, and the latter should model the down-sloping trend. For the first line, we find m using process outlined in
previous problems through the formula for slope of the line of the best fit; this yields 17,424,400

2,800,000 = 6.223. The y-intercept

is −996.7. The line for the first few frames is thus y1 = 6.223x− 996.7, where x is in the frame number (0, 100, 200, etc.).
The R2 score for y1 is 1− 2,234,114.4

110,666,155.6 ≈ 0.9798, which is a great fit. Multiplying 1− 0.9798 by 1.166 and subtracting from
1 yields an adjusted R2 score of 0.97645, which is still very high. The small difference between the R2 and the adjusted
R2 suggests that there is sufficient data to attain a trustworthy model.

5



For the second line, we find m = −7,579,800
825,000 ≈ −9.1876. The y-intercept comes out to 20, 478.891. The model for the

second part of the data is thus y2 = −9.1876x + 20, 478.891. The R2 score for y2 is 1 − 10,711,649.891
80,352,096 ≈ 0.8667, which is a

good fit. Multiplying 1 − 0.8667 by 1.2857 and subtracting from 1 yields an adjusted R2 score of 0.8286.
Our model for the number of infected people is thus the following piecewise linear model:

y =

{
6.223x− 996.7 if x < 1450

−9.1876x + 20, 478.891 if x ≥ 1450

The following new data was generated with the same parameters from the simulation:

Frame Infected Recovered

0 1 0
100 38 0
200 241 0
300 621 3
400 1105 38
500 1717 249
600 2372 630
700 3166 1174
800 3890 2013
900 4619 3077
1000 5338 4389
1100 6057 5990
1200 6720 7789
1300 7502 9838
1400 7784 12121
1500 7437 14637
1600 6176 17418
1700 4620 20019
1800 3119 22117
1900 1853 23629
2000 944 24644
2100 370 25230
2200 119 25481
2300 12 25588
2400 1 25599

The R2 score for y1 when evaluated on this dataset is 1 − 2,005,131.8
109,377,285.6 ≈ 0.9817. The root mean squared error is

365.6165. The R2 score for y2 when evaluated on this new dataset is 1 − 7,750,440.63
68,233,276.89 ≈ 0.8864. The root mean squared

error is 880.3657. Despite the simplicity of this two-part linear model, it has shown to model both the training and testing
data well.

The number of recovered individuals seems to just be increasing; we can just fit one linear model to it. The slope is
177,263,900
13,000,000 ≈ 13.6357. The y-intercept thus is −5593.5415. The R2 score comes out to be 1 − 194,761,968.9469

2,611,876,603.04 ≈ 0.9254,
which indicates that this is a pretty good fit. Multiplying 1 − 0.9254 by 1.0909 and subtracting from 1 yields an adjusted
R2 of 0.9186. Testing on the test dataset yields an R2 of 1 − 182,650,576.6438

2,591,939,198.24 ≈ 0.9295 and a root mean squared error of
≈ 2702.9656. This simple linear regression model performs well both on the training and testing data sets, which suggests
that it is a good model for the number of recovered people in any new simulation (run with the same parameters).

6


