Collingwood Homework 7

Andre Ye

14 October 2020
2.6 Context: Allyson and Adrian have decided to connect their ankles with a bungee cord; one end is tied to each person's ankle. The cord is 30 feet long, but can stretch up to 90 feet. They both start from the same location. Allyson moves $10 \mathrm{ft} / \mathrm{sec}$ and Adrian moves $8 \mathrm{ft} / \mathrm{sec}$ in the directions indicated.
2.6a Question: Where are the two girls located after two seconds?
2.6a Solution: Let $(0,0)$ be the original starting location and one unit distance represent one foot. Then, Adrian moves towards the negative side of the x-axis, and Allyson moves towards the positive side of the y-axis. Since Adrian moves at $8 \mathrm{ft} / \mathrm{sec}$, she moves 16 feet in two seconds; applying the same reasoning, Allyson moves 20 feet in two seconds. Applying these changes in their respective directions, Adrian is at location $(-16,0)$ and Allyson is at location $(0,20)$.
2.6b Question: After 2 seconds, will the slack in the bungee cord be used up?
2.6b Solution: The two girls are at location $(-16,0)$ and $(0,20)$. Their distance, then, is $\sqrt{16^{2}+20^{2}}=$ $\sqrt{656} \approx 25.61$ feet, which is less than the cord's length (30 feet). Therefore, after 2 seconds, the slack in the bungee cord will not be used up.
2.6c Question: Determine when the bungee cord first becomes tight; i.e. there is no slack in the line. Where are the girls located when this occurs?
2.6c Solution: Representing the location of the girls in terms of time t in seconds, where x_{d} and y_{d} represent Adrian's location, and x_{l} and y_{l} represent Allyson's location, we have $x_{d}=-8 t, y_{d}=0, x_{l}=0$, $y_{l}=10 t$. We want to find the time t in which the distance between the two reaches 30 feet, at which there will be no more slack in the bungee cord.

$$
\begin{aligned}
30 & =\sqrt{(0-(-8 t))^{2}+(10 t-0)^{2}} \\
900 & =64 t^{2}+100 t^{2} \\
900 & =164 t^{2} \\
\frac{225}{41} & =t^{2} \\
\sqrt{\frac{225}{41}} & =t
\end{aligned}
$$

Therefore, it takes $t \approx 2.34$ seconds for the bungee cord first to become tight.
2.6d Question: When will the bungee cord first touch the corner of the building?
2.6d Solution: The bottom-left corner of the building is located at point ($-20,30$). The line the bungee follows can be represented as $y=\frac{5}{4} x+b$, since for every four feet to the left Adrian moves, Allyson moves five feet up. Plugging ($-20,30$) into the equation yields $30=-25+b \rightarrow b=55$, which means that the y -intercept
is $(0,55)$. Hence, the bungee cord touches the building when Allyson is at 55 feet. Since Allyson moves 10 feet per second, this happens at $\frac{55}{10}=5.5$ seconds. Therefore, it takes 5.5 seconds for the bungee cord to first touch the corner of the building.
2.7 Context: Brooke is located 5 miles out from the nearest point A along a straight shoreline in her seakayak. Hunger strikes and she wants to make it to Kono's for lunch; see picture. Brooke can paddle 2 mph and walk 4 mph .
2.7a Question: If she paddles along a straight line course to the shore, find an expression that computes the total time to reach lunch in terms of the location where Brooke beaches the boat.
2.7a Solution: Let the shore be the x-axis, and let Brooke's original location be on he y-axis. Let x_{k} be the x-coordinate location at which Brooke's kayak reaches shore. There are two distance components that need to be accounted for: the distance from her original location to the shore, and the distance from her shore-boarding location to Kono's.

- Brooke begins at $(0,5)$ and she kayaks in a straight line to $(x, 0)$. Therefore, the distance between the two points is $\sqrt{25+x^{2}}$. Brooke paddles at 2 miles per hour, meaning she takes one hour to paddle two miles; therefore the time for her to paddle to $(x, 0)$ is $\frac{1}{2} \sqrt{25+x^{2}}$.
- Once Brooke reaches shore at $(x, 0)$, she travels to $(6,0)$. Hence, the distance is $6-x$ miles. Brooke walks at 4 miles per hour, meaning she takes one hour to walk four miles; therefore the time for her to walk from $(x, 0)$ to $(6,0)$ is $\frac{1}{4}(6-x)$.

Adding the two times, the total time is $\widehat{\frac{1}{2} \sqrt{25+x^{2}}+\frac{1}{4}(6-x) \text { hours }}$.
2.7b Question: Determine the total time to reach Kono's if she paddles directly to the point "A".
2.7b Solution: At this point, $x=0 . \frac{1}{2} \sqrt{25+0^{2}}+\frac{1}{4}(6-0)=\frac{5}{2}+\frac{3}{2}=4$. Therefore, if Brooke paddles directly to point "A", she takes 4 hours to reach Kono's.
2.7c Question: Determine the total time to reach Kono's if she paddles directly to Kono's.
2.7c Solution: At this point, $x=6 . \frac{1}{2} \sqrt{25+6^{2}}+\frac{1}{4}(6-6)=\frac{\sqrt{61}}{2} \approx 3.91$ hours. Therefore, if Brooke paddles directly to point Kono's, she takes ≈ 3.9 hours to reach Kono's.
2.7d Question: Do you think your answer to (b) or (c) is the minimum time required for Brooke to reach lunch?
2.7d Solution: Let us calculate the time taken for $x=3$ - some time in between the two extremes presented in (b) and (c) - to see if the two are minimums or not. $\frac{1}{2} \sqrt{25+3^{2}}+\frac{1}{4}(6-3)=\frac{\sqrt{34}}{2}+\frac{3}{4} \approx 3.67$ hours. This is less than the time for both alternatives; therefore, neither answers for (b) nor (c) are the minimum time required for Brooke to reach lunch.

