Collingwood Homework 6

Andre Ye

13 October 2020
2.3 Problem: Steve and Elsie are camping in the desert, but have decided to part ways. Steve heads North, at 6 AM, and walks steadily at 3 miles per hour. Elsie sleeps in, and starts walking West at 3.5 miles per hour starting at 8 AM . When will the distance between them be 25 miles?
2.3 Solution: Let d_{s} be the distance north that Steve has walked, and let d_{e} be the distance west Elsie has walked. Using the $d=r t$ framework, Steve's distance can be represented as $d_{s}=3 t$, where t is the number of hours from 6 AM Steve has been walking. Similarly, Elsie's distance is $d_{e}=3.5(t-2)$, since Elsie begins walking two hours after Steve begins.

The distance between the two is given by $d_{t}=\sqrt{\left(d_{s}\right)^{2}+\left(d_{e}\right)^{2}}$, since d_{s} and d_{e} represent the lengths of the vertical and horizontal components of a right triangle.

To find the time it takes for the distance between them to reach 25 miles, the following equation is true:

$$
\begin{aligned}
25 & =\sqrt{\left(d_{s}\right)^{2}+\left(d_{e}\right)^{2}} \\
25 & =\sqrt{(3 t)^{2}+(3.5(t-2))^{2}} \\
25^{2} & =9 t^{2}+(3.5 t-7)^{2} \\
625 & =9 t^{2}+12.25 t^{2}-49 t+49 \\
0 & =21.25 t^{2}-49 t-576
\end{aligned}
$$

Using the quadratic formula, we can find the value of t :

$$
\begin{aligned}
t & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{49 \pm \sqrt{(-49)^{2}-4(21.25)(-576)}}{2(21.25)} \\
& =\frac{49 \pm \sqrt{51361}}{42.5}
\end{aligned}
$$

Thus, the two solutions are $\frac{49+\sqrt{51361}}{42.5} \approx 6.4854$ hours and $\frac{49-\sqrt{51361}}{42.5} \approx-4.1795$ hours. Since hours cannot be negative, it takes Steve and Elsie ≈ 6.4854 hours to be 25 miles apart. This is about 6 hours and $0.4854 \cdot 60=29$ minutes after 6 AM , which means it will be $\approx 12: 29 \mathrm{PM}$ that afternoon.
2.4 Context: Erik's disabled sailboat is floating at a stationary location 3 miles East and 2 miles North of Kingston. A ferry leaves Kingston heading due East toward Edmonds at 12 mph . At the same time, Erik leaves the sailboat in a dinghy heading due South at $10 \mathrm{ft} / \mathrm{sec}$ (hoping to intercept the ferry). Edmonds is 6 miles due East of Kingston.
2.4a Problem: Compute Erik's speed in mph and the Ferry speed in $\mathrm{ft} / \mathrm{sec}$.
2.4a Solution: Erik travels at $10 \mathrm{ft} / \mathrm{sec}$. Because there are 60 seconds in a minute $\times 60$ minutes in an hour $=$ 3600 seconds in an hour, he travels $36000 \mathrm{ft} /$ hour. Because there are 5280 feet in a mile, he travels $\frac{36000}{5280}=\frac{75}{11}$
miles/hour. The ferry travels at 12 mph . Because there are 5280 feet in a mile, the ferry travels $12 \cdot 5280=$ 63360 feet per hour. Because there are 3600 seconds in an hour, the ferry travels $\frac{63360}{3600}=\frac{88}{5}$ feet per second. Hence, Erik's speed is $\frac{75}{11} \approx 6.81$ miles $/$ hour and the ferry's speed is $\frac{88}{5}=17.6 \mathrm{ft} / \mathrm{sec}$.
2.4b Problem: Impose a coordinate system and complete this table of data concerning locations (i.e., coordinates) of Erik and the ferry. Insert into the picture the locations of the ferry and Erik after 7 minutes.
2.4b Solution: Let the ferry begin at (0,0) (Kingston). Hence, because Erik is 3 miles East and 2 miles North of Kingston, Erik begins at $(3,2)$. Because Edmonds is 6 miles East of Kingston, it is located at $(6,0)$.

- At 0 sec., all objects are at their original locations. The distance is then $\sqrt{13} \approx 3.6056$ miles.
- At 30 sec ., the ferry, which travels 17.6 feet per second, is $30 \cdot 17.6=528$ feet, or $\frac{528}{5280}=0.1$ miles, East of Kingston at point $(0.1,0)$. At thirty sec., Erik, who moves at 10 feet per second, is $30 \cdot 10=$ 300 feet, or $\frac{300}{5280} \approx 0.0568$ miles South of his starting point at $(3,1.9432)$. The distance, then, is $\approx \sqrt{(3-0.1)^{2}+(1.9432-0)^{2}} \approx 3.4908$ miles.
- At 7 minutes, the ferry, which travels at 12 miles per hour, is $\frac{7}{60} \cdot 12=1.4$ miles East of Kingston, at location $(1.4,0)$. At 7 minutes, Erik, who travels at $10 \mathrm{ft} / \mathrm{sec}$, is $7 \cdot 60 \cdot 10=4200$ feet, or $\frac{4200}{5280} \approx 0.7955$ miles South of his starting point at location (3, 1.2045). The distance, then, is $\approx \sqrt{(3-1.4)^{2}+(1.2045-0)^{2}} \approx 2.0027$ miles.
As requested by the problem, a visualization of the points at 7 minutes:

- At t hours, the ferry, which travels at 12 miles per hour is $12 t$ miles East of Kingston $(0,0)$, which means it is at location $(12 t, 0)$. At t hours, Erik, who travels at $\frac{75}{11}$ miles per hour South from his starting position at $(3,2)$, which means he ends at $\left(3,2-\frac{75}{11} t\right)$. Using the distance formula, the distance between the two points is $d=\sqrt{(3-12 t)^{2}+\left(2-\frac{75}{11} t\right)^{2}}$.

Time	Ferry	Erik	Distance Between
0 sec	$(0,0)$	$(3,2)$	3.6056 miles
30 sec	$(0.1,0)$	$(3,1.9432)$	3.4908 miles
7 min	$(1.4,0)$	$(3,1.2045)$	2.0027 miles
t hours	$(12 t, 0)$	$\left(3,2-\frac{75}{11} t\right)$	$\sqrt{(3-12 t)^{2}+\left(2-\frac{75}{11} t\right)^{2}}$ miles

2.4c Problem: Explain why Erik misses the ferry.
2.4c Solution: Let x_{f} and y_{f} represent the x and y coordinate of the ferry, and let x_{e} and y_{e} represent the x and y coordinates of Erik. Then, the following relationships are true:

- $x_{f}=12 t$
- $y_{f}=0$
- $x_{e}=3$
- $y_{e}=2-\frac{75}{11} t$

If the ferry and Erik meet, there exists some time t such that the x and y coordinates of both entities are equal.

$$
\begin{gathered}
x_{f}=x_{e} \rightarrow 12 t=3 \rightarrow t=\frac{1}{4} \\
y_{f}=y_{e} \rightarrow 0=2-\frac{75}{11} t \rightarrow t=\frac{22}{75}
\end{gathered}
$$

The solutions for t are not equivalent; therefore, Erik misses the ferry.
2.4d Problem: After 10 minutes, a Coast Guard boat leaves Kingston heading due East at a speed of $25 \mathrm{ft} / \mathrm{sec}$. Will the Coast Guard boat catch the ferry before it reaches Edmonds? Explain.
2.4d Solution: Let d_{f} represent the number of feet East the ferry is from Kingston; let d_{c} represent the number of feet East the Coast Guard boat is from Kingston; let t represent the number of seconds that pass. The following $d=r t$-based equations are true:

$$
\begin{gathered}
d_{f}=25(t-10 \cdot 60) \\
d_{c}=\frac{88}{5} t
\end{gathered}
$$

If the Coast Guard boat can catch up to the ferry, then there exists a valid time t such that $d_{f}=d_{c}$.

$$
\begin{aligned}
d_{f} & =d_{c} \\
25(t-600) & =17.6 t \\
25 t-15000 & =17.6 t \\
7.4 t & =15000 \\
t & \approx 2027 \text { seconds }
\end{aligned}
$$

The ferry takes 30 minutes $\cdot 60$ seconds in a minute $=1800$ seconds to travel the 6 miles at 12 mph from Kingston to Edmonds. However, the Coast Guard requires 2027 seconds to catch up, which is an invalid time (larger than the allotted time) ; therefore the Coast Guard cannot catch up to the ferry.

