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Problem 13.1

Context: On a single set of axes, sketch a picture of the graphs of the following four equations: y =
−x+

√
2, y = −x−

√
2, y = x+

√
2, and y = x−

√
2. These equations determine lines, which in turn bound

a diamond shaped region in the plane.

Part A Problem: Show that the unit circle sits inside this diamond tangentially; i.e. show that the
unit circle intersects each of the four lines exactly once.

Part A Solution: Graphing the lines:

Solving for the intersection of x2 + y2 = 1 and y = x+
√

2:

x2 + (x+
√

2)2 = 1

2x2 + 2
√

2x+ 1 = 0

The discriminant is
(
2
√

2
)2 − 4 · 2 · 1 = 0, so there is only one solution - it intersects the unit circle once.

Because y = x+
√

2 intersects the unit circle only once, the unit circle is symmetric around y = x, and that
y = x−

√
2 is the reflection of y = x+

√
2 about y = x, y = x−

√
2 is also tangent to the unit circle.

Because y = x +
√

2 intersects the unit circle only once, the unit circle is symmetric around x = 0, and
that y = −x+

√
2 is the reflection of y = x+

√
2 about x = 0, y = −x+

√
2 is also tangent to the unit circle.

Lastly, using the same logic to determine that y = x−
√

2 is tangent to the unit circle because y = x+
√

2
is tangent previously, we can assert that y = −x−

√
2 is tangent to the unit circle because y = −x+

√
2 is

tangent.
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Part B Problem: Find the intersection points between the unit circle and each of the four lines.

Part B Solution: Consider the line y = x +
√

2. We found in part A that this line only intersects the
unit circle once. If the circle is only to intersect a line A once, then its intersection point can be found by
the intersection of a line B that passes through the center of the circle and is perpendicular to A. If B were
not perpendicular to A, then the radius would be too long and the circle would intersect A twice.

In this case, line B is y = −x. Solving for when lines A and B meet:

x+
√

2 = −x

2x = −
√

2

x = −
√

2

2

y can be easily found as
√

2
2 . All other lines are simply reflections over the x axis and/or the y-axis of

y = x+
√

2. By similarly reflecting the points of intersection, we can find the four intersection points to be:

• y = x+
√

2:
(
−
√

2
2 ,
√

2
2

)
• y = x−

√
2:
(√

2
2 ,−

√
2

2

)
• y = −x+

√
2:
(√

2
2 ,
√

2
2

)
• y = −x−

√
2: −

(√
2

2 ,−
√

2
2

)

Part C Problem: Construct a diamond shaped region in which the circle of radius 1 centered at (−2,−1)
sits tangentially. Use the techniques of this section to help.

Part C Solution: The circle’s origin is at (−2,−1); it has the same radius as in previous sections, so

observations are easily applicable. One thing we can notice is that vertices are placed at (xc ±
√

2
2 , yc ±

√
2

2 )

for center (xc, yc). Therefore, in this case, two lines should intersect each at (−2 +
√

2
2 ,−1 +

√
2

2 ), (−2 −
√

2
2 ,−1 +

√
2

2 ), (−2 +
√

2
2 ,−1−

√
2

2 ), and (−2−
√

2
2 ,−1−

√
2

2 ). Two lines should have slope 1, and two should

have slope −1. Furthermore, lines of the same slope are 2
√

2 in vertical distance from one another.

Finding the line that passes through
(
−2 +

√
2

2 , −1 +
√

2
2

)
with slope −1 (we know the line that passes

through it is −1 because it is on the top-right side of the unit circle and a line that is tangent to it must have
a negative slope):

−1 +

√
2

2
= 2−

√
2

2
+ b

−3 +
√

2 = b

y = −x − 3 +
√

2 is the first line; because (−2 +
√

2,−1 +
√

2) is at the highest point that two lines must
intersect at, the other line with slope 1 must be below y = x+ 1. Using the fact that lines of the same slope
are 2

√
2 in vertical distance from one another, the other line has equation y = −x− 3 +

√
2− 2

√
2 = 3−

√
2.

Finding the line that passes through
(
−2−

√
2

2 ,−1 +
√

2
2

)
with slope 1 (we know the line that passes

through it is 1 because it is on the top-left side of the unit circle and a line that is tangent to it must have a
positive slope):

−1 +

√
2

2
= −2−

√
2

2
+ b

1 +
√

2 = b
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Hence, y = x + 1 +
√

2 is the third line; the fourth line can be derived by translating this line 2
√

2 units

lower, since
(
−2−

√
2

2 ,−1 +
√

2
2

)
is at the highest point two points can intersect at. The fourth line is hence

y = x+ 1 +
√

2− 2
√

2 = x+ 1−
√

2.
The four lines used for constructing the diamond are hence y = −x−3+

√
2, y = −x−3−

√
2, y = x+1+

√
2

and y = x+ 1−
√

2.

Problem 13.2

Problem: The graph of a function y = f(x) is pictured with domain −2.5 ≤ x ≤ 3.5. Sketch the graph
of each of the new functions listed: g(x) = 2f(x+ 1), h(x) = 1

2f(2x− 1), j(x) = 4f
(

1
3x+ 2

)
− 2.

Solution:

Figure 1: g(x) = 2f(x+ 1)
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Figure 2: h(x) = 1
2f(2x− 1)

Figure 3: j(x) = 4f
(

1
3x+ 2

)
− 2

Problem 13.3

Problem: The graph of a function y = f(x) is pictured with domain −1 ≤ x ≤ 1. Sketch the graph of
the new function y = g(x) = 1

πf(3x)− 0.5. Find the largest possible domain of the function y =
√
g(x).

Solution: The graph given can be modelled by f̃(x) = tan (−x) + π
2 . We know that in the graph, the

curve passes through (1, 0); however, our current model predicts f̃(1) = tan (−1) + π
2 ≈ 0.01338 . . . , which is

very close but not at 0. To make a simple fix, we attempt to find the value of a where f̃(x) = a tan (−x) + π
2 .
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Solving for a:

0 = a tan (−1) +
π

2

a tan (−1) = −π
2

a =
−π2

tan (−1)

Hence, our approximate model is f̃(x) =
−π2

tan(−1) · tan (−x) + π
2 , with domain restriction −1 ≤ x ≤ 1.

Plotting this approximation through g(x) = 1
πf(3x)− 0.5 yields the following sketch (f(x) in black, g(x)

in red):

We can see that the domain of g(x) is restricted by the domain of f(x). Since f(x) takes in only values of
x where −1 ≤ x ≤ 1, and g(x) passes 3x through f(x), g(x)’s domain is restricted to − 1

3 ≤ x ≤ 1
3 . Because

negative numbers cannot be passed into the real square root function, the domain of
√
g(x) is 0 ≤ x ≤ 1

3 .
Alternatively, without plotting, we could determine the new range to be

[
0, 1

3

]
because 3x = 0 → x = 0

and 3x = 1→ x = 1
3 , forming the new domain for the input of the transformed function.

Problem 13.4

Part A

Part A Context: Each of the six functions y = f(x) can be written in the standard form y = A|B(x−
C)| + D, for some constants A, B, C, and D. Find these constants, describe the precise order of graphical
operations involved in going from the graph of y = |x| to the graph of y = f(x) (paying close attention to
the order), write out the multipart rule, sketch the graph, and calculate the coordinates of the vertex of the
graph.

Part A1 Problem: f(x) = |x− 2|

Part A1 Solution: In this case, only one transformation is being done; thus, it is clear that A = 1, B =
1, C = 2, D = 0.

To get from y = |x| to y = f(x), follow the following operations:

1. Shift 2 units to the right.

The x-value of the “vertex” of the graph is the value of x for which the part inside the absolute value is
equal to zero. Hence, the vertex is x− 2 = 0→ x = 2. f(2) = 0, so the “vertex” occurs at (2, 0).

The multipart rule can be determined as follows:

f(x) =

{
function with positive absolute value if x > x-value of vertex

function with negated absolute value if x ≤ x-value of vertex
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Using this, we can find that the multipart function is

f(x) =

{
x− 2 if x > 2

−x+ 2 if x ≤ 2

Part A2 Problem: f(x) = 2|x+ 3|

Part A2 Solution: This function is already written in A|B(x− C)|+D form; thus, A = 2, B = 1, C =
−3, D = 0.

To get from y = |x| to y = f(x), follow the following operations:

1. Shift 3 units to the left.

2. Expand vertically by a factor of 2.

The x-value of the “vertex” of the graph is the value of x for which the part inside the absolute value is
equal to zero. Hence, the vertex is x+ 3 = 0→ x = −3. f(−3) = 0, so the “vertex” occurs at (−3, 0).

Using the framework outlined in Part A1, we can find that the multipart function is

f(x) =

{
2(x+ 3) if x > −3

2(−(x+ 3) if x ≤ −3

Part A3 Problem: f(x) = |2x− 1|

Part A3 Solution: This function can be written as f(x) = |2(x−0.5)|; thus, A = 1, B = 2, C = 0.5, D =
0.

To get from y = |x| to y = f(x), follow the following operations:

1. Shift 1 unit to the right.

2. Compress horizontally by a factor of 2.

Alternatively,

1. Compress horizontally by a factor of 2.

2. Shift 0.5 units to the right.

The x-value of the “vertex” of the graph is the value of x for which the part inside the absolute value is
equal to zero. Hence, the vertex is 2x− 1 = 0→ x = 1

2 . f
(

1
2

)
= 0, so the “vertex” occurs at

(
1
2 , 0
)
.

Using the framework outlined in Part A1, we can find that the multipart function is

f(x) =

{
2x− 1 if x > 1

2

−(2x− 1) if x ≤ 1
2

Part A4 Problem: f(x) = |2(x− 1)|

Part A4 Solution: This function is already in “standard form”; thus, A = 1, B = 2, C = 1, D = 0.
To get from y = |x| to y = f(x) = |2x− 2|, follow the following operations:

1. Shift 1 units to the right.

2. Compress horizontally by a factor of 2.

6



The x-value of the “vertex” of the graph is the value of x for which the part inside the absolute value is
equal to zero. Hence, the vertex is 2x− 2 = 0→ x = 1. f (1) = 0, so the “vertex” occurs at (1, 0).

Using the framework outlined in Part A1, we can find that the multipart function is

f(x) =

{
2(x− 1) if x > 1

−2(x− 1) if x ≤ 1

Part A5 Problem: f(x) = 3|2x− 1|+ 5

Part A5 Solution: This function can be written as 3|2(x−0.5)|+5; thus, A = 3, B = 2, C = 0.5, D = 5.
To get from y = |x| to y = f(x), follow the following operations:

1. Shift 1 units to the right.

2. Compress horizontally by a factor of 2.

3. Expand vertically by a factor of 3.

4. Shift 5 units upwards.

Alternatively,

1. Compress horizontally by a factor of 2.

2. Shift 0.5 units to the right.

3. Expand vertically by a factor of 3.

4. Shift 5 units upwards.

The x-value of the “vertex” of the graph is the value of x for which the part inside the absolute value is
equal to zero. Hence, the vertex is 2x− 1 = 0→ x = 1

2 . f
(

1
2

)
= 5, so the “vertex” occurs at

(
1
2 , 5
)
.

Using the framework outlined in Part A1, we can find that the multipart function is

f(x) =

{
3(2x− 1) + 5 if x > 1

2

−(3(2x− 1) + 5) if x ≤ 1
2

Part A6 Problem: f(x) = −2|x+ 3| − 1

Part A3 Solution: This function is already in “standard form”; thus, A = −2, B = 1, C = −3, D = −1.
To get from y = |x| to y = f(x), follow the following operations:

1. Shift 3 units to the left.

2. Expand vertically by a factor of 2.

3. Reflect over the x-axis.

4. Shift 1 unit downwards.

The x-value of the “vertex” of the graph is the value of x for which the part inside the absolute value is
equal to zero. Hence, the vertex is x+ 3 = 0→ x = −3. f (−3) = −1, so the “vertex” occurs at (−3,−1).

Using the framework outlined in Part A1, we can find that the multipart function is

f(x) =

{
−2(x+ 3)− 1 if x > −3

−(−2(x+ 3)− 1) if x ≤ −3

Graphs for Parts A1-A6
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Part B

Part B Context: Solve the following inequalities using your work in the previous part of this problem:

Part B1 Problem: |x− 2| ≤ 3

Part B1 Solution:
x− 2 ≤ 3→ x ≤ 5

−x+ 2 ≤ 3→ −x ≤ 1→ x ≥ −1

Hence, −1 ≤ x ≤ 5.

Part B2 Problem: 1 ≤ 2|x+ 3| ≤ 5

Part B2 Solution:

2x+ 6 ≥ 1→ 2x ≥ −5→ x ≥ −5

2

2x+ 6 ≤ 5→ 2x ≤ −1→ x ≤ −1

2

The domain subset − 5
2 < x < 1

2 satisfies 1 ≤ 2|x+ 3| ≤ 5.

−2x− 6 ≥ 1→ −2x ≥ 7→ x ≤ −7

2

−2x− 6 ≤ 5→ −2x ≤ 11→ x ≥ −11

2

The domain subset − 11
2 < x < − 7

2 also satisfies 1 ≤ 2|x+ 3| ≤ 5.
Hence, the solutions are − 5

2 < x < − 1
2 and − 11

2 < x < − 7
2 .

Part B3 Problem: y = 3|2x− 1|+ 5 ≥ 10
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Part B3 Solution:

6x− 3 + 5 ≥ 10→ 6x ≥ 8→ x ≥ 4

3

−6x+ 3 + 5 ≥ 10→ −6x ≥ 2→ x ≤ −1

3

Hence, the solution is x ≤ − 1
3 or x ≥ 4

3 .

Part C

Part C Problem: The graphs of y = 3|2x − 1| + 5 and y = −|x − 3| + 10 intersect to form a bounded
region of the plane. Find the vertices of this region and sketch a picture.

Part C Solution: There are four individual line segments:

1. 3(2x− 1) + 5→ 6x− 3 + 5→ 6x+ 2, where 2x− 1 > 0→ 2x > 1→ x > 1
2 .

2. −3(2x− 1) + 5→ −6x+ 3 + 5→ −6x+ 8, where 2x− 1 < 0→ 2x < 1→ x < 1
2 .

3. −(x− 3) + 10→ −x+ 3 + 10→ −x+ 13, where x− 3 > 0→ x > 3.

4. (x− 3) + 10→ x+ 7, where x− 3 < 0→ x < 3.

From the graphs of the equations, we see that Eq. 1 and Eq. 2 intersect with Eq. 4. Thus, we have
intersection points to be

• Eq. 1 intersects Eq. 4: 6x+ 2 = x+ 7→ 5x = 5→ x = 1. y = 1 + 7 = 8.

• Eq. 2 intersects Eq. 4: −6x+ 8 = x+ 7→ −7x = −1→ x = 1
7 . y = 7 + 1

7 = 50
7 .

Lastly, the third vertex is the “vertex” of 3|2x− 1|+ 5, which is
(

1
2 , 5
)
. Hence, the vertices of this region are(

1
2 , 5
)
,
(

1
7 ,

50
7

)
, (1, 8).

Graph:

Problem 13.5

Context: Consider the function y = f(x) with multipart definition

f(x) =


0 if x ≤ −1

2x+ 2 if − 1 ≤ x ≤ 0

−x+ 2 if 0 ≤ x ≤ 2

0 if x ≥ 2

Part A Problem: Sketch the graph of y = f(x).

Part A Solution:
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Part B Problem: Is y = f(x) an even function? Is y = f(x) an odd function?

Part B Solution: A function is even if it is symmetric across the y-axis, which is not the case. Hence,
f(x) is not even. A function is odd if reflecting it over the x-axis yields the same graph as if it is reflected
over the y-axis; this is also not the case. Hence, f(x) is not odd either.

Parts C-E Problems: C) Sketch the reflection of the graph across the x-axis and the y-axis. Obtain
the resulting multipart equations for these reflected curves. D) Sketch the vertical dilations y = 2f(x) and
y = 1

2f(x). E) Sketch the horizontal dilations y = f(2x) and y = f
(

1
2x
)
.

Parts C-E Answers: Dotted black is f(x), red is −f(x), full line purple is 1
2f(x), green is f

(
1
2x
)
,

orange is 2f(x), blue is f(−x), and dotted purple is f(2x).

The multipart equation for reflection over the x-axis simply requires negating all values; thus it is given
by

−f(x) =


0 if x ≤ −1

−2x− 2 if − 1 ≤ x ≤ 0

x− 2 if 0 ≤ x ≤ 2

0 if x ≥ 2

The multipart equation for reflecting over the y-axis requires negating values of x to begin with, like this:

f(−x) =


0 if − x ≤ −1

2x− 2 if − 1 ≤ −x ≤ 0

−x− 2 if 0 ≤ −x ≤ 2

0 if − x ≥ 2

We can rewrite the inequality conditions to remove the negation of x, yielding

f(−x) =


0 if x ≥ 1

2x− 2 if 1 ≥ x ≥ 0

−x− 2 if 0 ≥ x ≥ −2

0 if x ≤ −2
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Part F Problem: Find a number c > 0 so that the highest point on the graph of the vertical dilation
y = cf(x) has y-coordinate 11.

Part F Solution: The maximum point of f(x) is 2; thus we must find the value c such that 2c = 11,
yielding c = 11

2 .

Part G Problem: Using horizontal dilation, find a number c > 0 so that the function values f
(
x
c

)
are

non-zero for all − 5
2 < x < 5.

Part G Solution: The current nonzero domain of x is (−1, 2); thus must be stretched to
(
− 5

2 , 5
)
. Any

number larger than 5
2 will suffice (f(x) does not necessarily need to be not nonzero for values of x outside

the domain of
(

5
2 , 5
)
); for example, c > ππ

τ

.

Part H Problem: Using horizontal dilation, find positive numbers c, d > 0 so that the function values
f
(

1
c (x− d)

)
are non-zero precisely when 0 < x < 1.

Part H Solution: The current nonzero domain of x is (−1, 2); one can first shift this over 1 units
yielding a domain of (0, 3). Compressing this by a factor of 3 yields (0, 1). The transformation is hence
f (3x− 1) = f

(
3
(
x− 1

3

))
. Hence, d = 1

3 and c = 1
3 .

Additional Problem Set Problem 1

Context: Functions can be functions of numbers, but they can also be functions of all sorts of things.
In this problem, we’ll consider functions of functions, commonly called “functionals”.

Part A Problem: Let F be the function that takes in a function and compresses it by a factor of 2.
For example, if f(x) = x2, then F(f) = g, where g(x) = (2x)2. Is F a one-to-one function? If so, describe
its inverse function.

Part A Solution: F(g(x)) = g(2x). Hence, F−1(g(x)) = g( 1
2x), since

F(F−1(g(a))) = g

(
2 · 1

2
· a
)

= g(a)

. Because we have found a valid inverse function, F is one-to-one.

Part B Problem: Let G be the function that takes in a function and stretches it vertically by a factor
of three, and then shifts it to the right by four units. Is G a one-to-one function? If so, describe its inverse
function.

Part B Solution: G(g(x)) = 3g(x− 4). Hence, G−1(g(x)) = 1
3g(x+ 4), since

G(G−1(g(x))) = 3 · 1

3
· (g(x+ 4− 4)) = g(x)

. Because we have found a valid inverse function, G is one-to-one.

Part C Problem: Is there a function H so that H takes a transformed function and produces the parent
function?

Part C Solution: The solution to this answer lies in how broad we are willing to consider the definition
of a “function”. If it is simply an entity that takes an input and puts out an output, then yes, there is a
function H that can take a transformed function and produce the parent function, be that the human mind
or a complex mathematical engine. In the scope of functions as simpler transformations, however, no, there
is no one function that can through relatively simpler operations return the parent function.
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Additional Problem Set 3 Problem 2

Problem: Find a function that satisfies, for all x, f(x) + 2 = f(x+ 1).

Solution: Looking at the statement in English, it is saying that “moving the function up 2 vertically
yields the same result as moving it 1 unit to the left”. This sounds like a linear relationship, so let us begin
with a linear model y = mx+ b, where

mx+ b+ 2 = m(x+ 1) + b→ mx+ 2 = mx+m→ m = 2

The value of b is arbitrary (2x+ b+ 2 = 2(x+ 1) = b→ b = b); any value makes it work. So, let the model be

f(x) = 2x+
floor (40 mod (9, 8))

4
45 mod

(
ceil

(
60 tanh

(
4

1
1+1−e

))
, 3

)
√

(tan(sin(5))+100)6

√
π+400

89
9830989273

We know that our answer is right because a) we found m through rigorously mathematical means, and
b) we found that the value of b is arbitrary through rigorously mathematical means.

Additional Problem Set 3 Problem 3

Problem: Find a function which satisfies, for all x, f(x) + 3 = 4f(x).

Solution: We notice in this scenario that unlike in the previous problem, f(x) can be a constant function;
the equation resembles a linear equations of sorts, where f(x) represents one variable. Hence, let us take
f(x) = a – a constant function – such that the function returns a for any value of x. Then, we have that
a + 3 = 4a =⇒ 3a = 3 =⇒ a = 1. Therefore, a function that satisfies the given equality is f(x) = 1. We
know this function always satisfies the inequality because 1 + 3 will always be equal to 4(1).

Additional Problem Set 3 Problem 3 Version 2

Problem: Find a function which satisfies, for all x, f(x+ 3) = 4f(x).

Solution: In English, this reads as “moving the function 3 units to the left yields the same impact as
multiplying it by 4”. This relationship sounds like an exponential one. We can solve for a and b in f(x) = abx.

abx+3 = 4abx

bx+3 = 4bx

bx · b3

bx
= 4

b3 = 4

b =
3
√

4

Given that a cancelled out, it should be clear that a is arbitrary. Hence, our function will be

f(x) =



floor(40 mod(9,8))

4
45mod

ceil

60 tanh

4

1
1+1−e

, 3

 floor(40 mod(9,8))

4
45mod

ceil

60 tanh

4

1
1+1−e

, 3



√
(tan(sin(5))+100)6

√
π+400

89
9830989273


64πτ


· 3
√

4
x
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