Collingwood Homework 4

Andre Ye

7 October 2020
1.11 Question: A typical cell in the human body contains molecules of deoxyribonucleic acid, referred to as $D N A$ for short. In the cell, this DNA is all twisted together in a tight little packet. But imagine unwinding (straightening out) all of the DNA form a single typical cell and laying it "end-to-end"; then the sum total length will be approximately 2 meters. Assume the human body has 10^{14} cells containing DNA. How many times would the sum total length of DNA in your body wrap around the equator of the earth?
1.11 Solution: One cell contributes ≈ 2 meters in length; therefore, 10^{14} cells measure $10^{14} \cdot 2=2 \times 10^{14}$ meters in length. A Wikipedia search will yield that Earth's equator is $\approx 40,075 \mathrm{~km}$ long. Since there are 1000 meters in a kilometer, this is equivalent to $\approx 40,075 \cdot 1000=40,075,000=4.0075 \times 10^{7}$ meters. To find how many times the total DNA length could wrap around the equator, one divides the former by the latter:

$$
\frac{2 \times 10^{14}}{4.0075 \times 10^{7}}=\frac{2 \times 10^{7}}{4.0075}=4,990,642.545 \text { times }
$$

Hence, when stretched end-to-end, the total length of DNA in your body can wrap around the equator of the earth $4,9990,642.545 \approx 5 \times 10^{6}$ times.
1.12 Context: A water pipe mounted to the ceiling has a leak and is dripping onto the floor below, creating a circular puddle of water. The area of the circular puddle is increasing at a constant rate of 11 cm^{2} /hour.
1.12a Question: Find the area and radius of the puddle after 1 minute, 92 minutes, 5 hours, 1 day.
1.12a Solution: The area of a puddle increases at $11 \mathrm{~cm}^{2}$ per hour; therefore, the area of the puddle after h hours is then $11 h \mathrm{~cm}^{2}$.

- At 1 minute, $h=\frac{1}{60}$. Therefore, the area of the puddle is $\frac{11}{60} \mathrm{~cm}^{2}$.
- At 92 minutes, $h=\frac{92}{60}$. Therefore, the area of the puddle is $\frac{1012}{60} \mathrm{~cm}^{2}$.
- At 5 hours, $h=5$. Therefore, the area of the puddle is $11 \cdot 5=55 \mathrm{~cm}^{2}$.
- At 1 day, $h=24$. Therefore, the area of the puddle is $11 \cdot 24=264 \mathrm{~cm}^{2}$.

The area of a circle is $A=\pi r^{2}$. Assuming the puddle is a perfect circle, we can find the radius as:

$$
A=\pi r^{2} \rightarrow \frac{A}{\pi}=r^{2} \rightarrow \sqrt{\frac{A}{\pi}}=r \rightarrow r=\sqrt{\frac{A}{\pi}}
$$

Our derived formula can be used to find the radius of each puddle.

- At 1 minute, $A=\frac{11}{60}$. The radius is then $r=\sqrt{\frac{11}{60 \pi}} \approx 0.24 \mathrm{~cm}$.
- At 92 minutes, $A=\frac{1012}{60}$. The radius is then $r=\sqrt{\frac{1012}{60 \pi}} \approx 2.32 \mathrm{~cm}$.
- At 5 hours, $A=5$. The radius is then $\sqrt{\frac{55}{\pi}} \approx 4.18 \mathrm{~cm}$.
- At 1 day, $A=264$. The radius is then $\sqrt{\frac{264}{\pi}} \approx 9.17 \mathrm{~cm}$.
1.12b Question: Is the radius of the puddle increasing at a constant rate?
1.12b Solution: Let us write the relationship between h, the number of hours, and r, the radius of the puddle. Using the derived formula above, this comes out to be:

$$
r=\sqrt{\frac{11 \cdot h}{\pi}}
$$

Fundamentally, this represents a square-root relationship $y=\sqrt{a x}$, not a linear one as the result of a constant rate $(y=a x)$. Therefore, the puddle is not increasing at a constant rate.

