Collingwood 38

Andre Ye

2 December 2020
7.18 Problem: Consider the equation: $\alpha x^{2}+2 \alpha^{2} x+1=0$. Find the values of x that make this equation true (your answer will involve α). Find the values of α that make this equation true (your answer will involve $x)$.
7.18 Solution: Let us use the quadratic equation to solve for x.

$$
x=\frac{-2 \alpha^{2} \pm \sqrt{\left(2 \alpha^{2}\right)^{2}-4(\alpha)(1)}}{2(\alpha)}=\frac{-2 \alpha^{2} \pm \sqrt{4 \alpha^{4}-4 \alpha}}{2 \alpha}
$$

Therefore, the value of x that makes the equation true is $x=\frac{-2 \alpha^{2} \pm \sqrt{4 \alpha^{4}-4 \alpha}}{2 \alpha}$.
Let us use the quadratic equation to solve for α. We will need to rewrite the equation as $2 x \alpha^{2}+x^{2} \alpha+1=0$.

$$
\alpha=\frac{-x^{2} \pm \sqrt{\left(x^{2}\right)^{2}-4(2 x)(1)}}{2(2 x)}=\frac{-x^{2} \pm \sqrt{x^{4}-8 x}}{4 x}
$$

Therefore, the value of α that makes the equation true is $\alpha=\frac{-x^{2} \pm \sqrt{x^{4}-8 x}}{4 x}$.
7.19 Context: For each of the following equations, find the value(s) of the constant α so that the equation has exactly one solution, and determine the solution for each value.
7.19a Problem: $\alpha x^{2}+x+1=0$
7.19a Solution: The discriminant must be 0 if the equation has exactly one solution. The equation is:

$$
\begin{aligned}
1^{2}-4(\alpha)(1) & =0 \\
1 & =4 \alpha \\
\alpha & =\frac{1}{4}
\end{aligned}
$$

Therefore, $\alpha=\frac{1}{4}$. Solving for the solution of this:

$$
\begin{aligned}
\frac{1}{4} x^{2}+x+1 & =0 \\
x^{2}+4 x+4 & =0 \\
(x+2)^{2} & =0 \\
x & =-2
\end{aligned}
$$

The solution in this case is $x=-2$.
7.19b Problem: $x^{2}+\alpha x+1=0$
7.19b Solution: The discriminant must be 0 if the equation has exactly one solution. The equation is:

$$
\begin{aligned}
\alpha^{2}-4(1)(1) & =0 \\
\alpha^{2} & =4 \\
\alpha & = \pm 2
\end{aligned}
$$

Therefore, $\alpha= \pm 2$. Solving for one solution of this with $\alpha=2$:

$$
\begin{aligned}
x^{2}+2 x+1 & =0 \\
(x+1)^{2} & =0 \\
x & =-1
\end{aligned}
$$

Solving for another solution with $\alpha=-2$:

$$
\begin{aligned}
x^{2}-2 x+1 & =0 \\
(x-1)^{2} & =0 \\
x & =1
\end{aligned}
$$

The solutions in this case are $x=1$ and $x=-1$.
7.19c Problem: $x^{2}+x+\alpha=0$
7.19c Solution: The discriminant must be 0 if the equation has exactly one solution. The equation is:

$$
\begin{aligned}
1^{2}-4(1)(\alpha) & =0 \\
1 & =4 \alpha \\
\alpha & =\frac{1}{4}
\end{aligned}
$$

Therefore, $\alpha=\frac{1}{4}$. Solving for one solution of this with $\alpha=2$:

$$
\begin{aligned}
x^{2}+x+\frac{1}{4} & =0 \\
4 x^{2}+4 x+1 & =0 \\
(2 x+1)^{2} & =0 \\
2 x & =-1 \\
x & =-\frac{1}{2}
\end{aligned}
$$

The solution in this case is $x=-\frac{1}{2}$.
7.19d Problem: $x^{2}+\alpha x+4 \alpha+1=0$
7.19d Solution: The discriminant must be 0 if the equation has exactly one solution. The equation is:

$$
\begin{aligned}
\alpha^{2}-4(1)(4 \alpha+1) & =0 \\
\alpha^{2}-16 \alpha-4 & =0 \\
\alpha^{2}-16 \alpha+64 & =68 \\
(\alpha-8)^{2} & =68 \\
\alpha-8 & = \pm 2 \sqrt{17} \\
\alpha & = \pm 2 \sqrt{17}+8
\end{aligned}
$$

Therefore, $\alpha= \pm 2 \sqrt{17}+8$. Solving for one solution of this with $\alpha=2 \sqrt{17}+8$ with the quadratic formula:

$$
\begin{aligned}
x^{2}+(2 \sqrt{17}+8) x+4(2 \sqrt{17}+8)+1 & =0 \\
x^{2}+(2 \sqrt{17}+8) x+8 \sqrt{17}+33 & =0 \\
x & =\frac{-(2 \sqrt{17}+8) \pm \sqrt{0}}{2(1)} \\
& =-\frac{2 \sqrt{17}+8}{2} \\
& =-\sqrt{17}-4
\end{aligned}
$$

Note that we can assume the part of the quadratic formula, $b^{2}-4 a c$, is equal to 0 , because we found values of α in which that is true.

Solving for another solution with $\alpha=-2 \sqrt{17}+8$:

$$
\begin{aligned}
x^{2}+(-2 \sqrt{17}+8) x+4(2 \sqrt{17}+8)+1 & =0 \\
x^{2}+(-2 \sqrt{17}+8) x+8 \sqrt{17}+33 & =0 \\
x & =\frac{-(-2 \sqrt{17}+8) \pm \sqrt{0}}{2(1)} \\
& =-\frac{-2 \sqrt{17}+8}{2} \\
& =\sqrt{17}-4
\end{aligned}
$$

The solutions in this case are $x=-\sqrt{17}-4$ and $x=\sqrt{17}-4$.

