Collingwood 37

Andre Ye

1 December 2020

7.16 Context: Sven starts walking due south at 5 feet per second from a point 120 feet north of an intersection. At the same time Rudyard starts walking due east at 4 feet per second from a point 150 feet west of the intersection.
7.16a Problem: Write an expression for the distance between Sven and Rudyard t seconds after they start walking.
7.16a Solution: Let $(0,0)$ be the location of the intersection. Therefore, Sven begins at $(0,120)$ and Rudyard begins at $(-150,0)$. Since Sven moves down in our coordinate system at 5 feet per second, his location can be represented by $(0,120-5 t)$, where t is the number of seconds that has elapsed. Similarly, since Rudyard moves right in our coordinate system at 4 feet per second, his location can be represented by $(-150+4 t, 0)$. The distance between these two points is then:

$$
\begin{aligned}
& \sqrt{(150-4 t)^{2}+(120-5 t)^{2}} \\
& =\sqrt{22500-1200 t+16 t^{2}+14400-1200 t+25 t^{2}} \\
& =\sqrt{41 t^{2}-2400 t+36900}
\end{aligned}
$$

Therefore, the expression for the distance between Sven and Rudyard is $\sqrt{41 t^{2}-2400 t+36900} \mathrm{ft}$. .
7.16b Problem: When are Sven and Rudyard closest? What is the minimum distance between them?
7.16b Solution: The minimum value of $\sqrt{41 t^{2}-2400 t+36900}$ is the minimum value of $41 t^{2}-2400 t+$ 36900 (for non-negative values of $41 t^{2}-2400 t+36900$). The vertex of $41 t^{2}-2400 t+36900$ is $-\frac{-2400}{2(41)}=\frac{1200}{41} \approx$ 29.26829. Plugging this into the original expression is $\sqrt{41(29.26829)^{2}-2400(29.26829)+36900} \approx 42.16692$. Therefore, Sven and Rudyard are the closest at ≈ 29.26829 seconds, at which they are ≈ 42.16692 feet apart .
7.17 Problem: After a vigorous soccer match, Tina and Michael decide to have a glass of their favorite refreshment. They each run in a straight line along the indicated paths at a speed of $10 \mathrm{ft} / \mathrm{sec}$. Parametrize the motion of Tina and Michael individually. Find when and where Tina and Michael are closest to one another; also compute this minimum distance.
7.17 Solution: Michael begins at $(0,0)$ and heads to the soy milk at $(200,300)$. The slope in that case is $\frac{3}{2}$. We can find his horizontal and vertical movement in one second, $(3 x)^{2}+(2 x)^{2}=10^{2} \rightarrow 4 x^{2}+9 x^{2}=100 \rightarrow$ $x^{2}=\frac{100}{13} \rightarrow x=\sqrt{\frac{100}{13}} \approx 2.773501$. Therefore, he travel $2 \cdot 2.773501=5.547002$ feet horizontally vertically and $3 \cdot 2.773501=8.320503$. Therefore, the parametric equation representing his location is $(5.547 t, 8.321 t)$.

Tina begins at $(400,50)$ and goes to the beet juice, located at $(-50,275)$. The slope is $\frac{275-50}{-50-400}=-\frac{1}{2}$. This means that she travels two units left for every unit up she travels; therefore, we can write that $x^{2}+(2 x)^{2}=10^{2}$ to find the vertical and horizontal components of her movement every second, in which she moves 10 feet in that direction, where x is the length of her vertical movement. This yields $5 x^{2}=100 \rightarrow x= \pm \sqrt{20}$; because the length must be positive, we know that Tina travels $2 \sqrt{20} \approx 8.944272$ feet left and $\sqrt{20} \approx 4.472136$ feet
up every second. Therefore, Tina's position can be represented by taking into account her initial position, yielding $(400-8.944 t, 50+4.472 t)$.

The distance between the two can be represented as:

$$
\begin{aligned}
& \sqrt{(400-8.944 t-5.547 t)^{2}+(50+4.472 t-8.321 t)^{2}} \\
= & \sqrt{(-14.491 t+400)^{2}+(-3.849 t+50)^{2}} \\
= & \sqrt{209.989081 t^{2}-11592.8 t+160000+14.814801 t^{2}-384.9 t+2500} \\
= & \sqrt{224.803882 t^{2}-11977.7 t+162500}
\end{aligned}
$$

The vertex of $\sqrt{f(x)}$ is the vertex of $f(x)$, as long as the vertex of $f(x)$ is non-negative. Hence, we can find the vertex of $224.803882 t^{2}-11977.7 t+162500$ using the vertex formula:

$$
t=-\frac{-11977.7}{2(224.803882)} \approx 26.640332
$$

Plugging this time back into the equation for their distance:

$$
\sqrt{224.803882(26.640332)^{2}-11977.7(26.640332)+162500} \approx 54.360363
$$

Therefore, they are the closest at about 26.64 seconds and 54.36 feet apart.

