Collingwood 33

Andre Ye

November 2020
7.7 Context: A hot air balloon takes off from the edge of a plateau. Impose a coordinate system as pictured below and assume that the path the balloon follows is the graph of the quadratic function $y=f(x)=-\frac{4}{2500} x^{2}+\frac{4}{5} x$. The land drops at a constant incline from the plateau at the rate of 1 vertical foot for each 5 horizontal feet.
7.7a Problem: What is the maximum height of the balloon above plateau level?
7.7a Solution: The vertex if $-\frac{b}{2 a}=-\frac{\frac{4}{5}}{2\left(-\frac{4}{2500}\right)}=250$. This yields a height of $-\frac{4}{2500}(250)^{2}+\frac{4}{5}(250)=$ 100. Therefore the maximum height of the balloon above plateau level is 100 feet.
7.7b Problem: What is the maximum height of the balloon above ground level?
7.7b Solution: The plateau can be represented with the line $y=-\frac{1}{5} x$. Therefore, the total height is $-\frac{4}{2500} x^{2}+\frac{4}{5} x+\left(\frac{1}{5} x\right)=-\frac{1}{625} x^{2}+x$. The maximum is at $x=-\frac{b}{2 a}=-\frac{1}{2\left(-\frac{1}{625}\right)}=\frac{625}{2}$. Plugging this yields $-\frac{1}{625}\left(\frac{625}{2}\right)^{2}+\frac{625}{2}=-\frac{625}{4}+\frac{625}{2}=\frac{625}{4}$. Therefore, the maximum height is at $\frac{625}{4}$ feet.
7.7c Problem: Where does the balloon land on the ground?
7.7c Solution: The solution representing the distance from the balloon to the ground was $-\frac{1}{625} x^{2}+x$, as derived in 7.7 b solution. The balloon lands on the ground when the distance is 0 . Solving:

$$
\begin{aligned}
-\frac{1}{625} x^{2}+x & =0 \\
x^{2}-625 x & =0 \\
x & =\frac{625 \pm \sqrt{625^{2}}}{2} \\
& =0,625
\end{aligned}
$$

$x=0$ is when the balloon initially lands on the ground. Therefore, the solution for when the balloon lands on the ground afterwards is at $x=625$. Hence, y is $-\frac{1}{5}(625)=-125$. The point where it lands is now (625, -125).
7.7d Problem: Where is the balloon 50 feet above the ground?
7.7d Solution: Solving for the following equation:

$$
\begin{aligned}
-\frac{1}{625} x^{2}+x & =50 \\
x^{2}-625 x & =-31250 . \\
x^{2}-625 x+31250 & =0 \\
x & =\frac{-(-625) \pm \sqrt{(-625)^{2}-4 \cdot 1 \cdot 31250}}{2 \cdot 1} \\
& =\frac{625+125 \sqrt{17}}{2}, \frac{625-125 \sqrt{17}}{2}
\end{aligned}
$$

These are 570.19 and 54.81 when rounded, respectively. The location of each is $-\frac{4}{2500}(570.19)^{2}+\frac{4}{5}(570.19) \approx$ -64.04 and $-\frac{4}{2500}(54.81)^{2}+\frac{4}{5}(54.81) \approx 39.04$. Therefore, the two locations where the balloon is 50 feet above the ground are $(570.19,-64.04)$ and $(54.81,39.04)$.
7.8a Problem: Suppose $f(x)=3 x^{2}-2$. Does the point $(1,2)$ lie on the graph of $y=f(x)$? Why or why not?
7.8a Solution: $3(1)^{2}-2=1$. Because $1 \neq 2$, the point $(1,2)$ does not lie on the graph.
7.8b Problem: If b is a constant, where does the line $y=1+2 b$ intersect the graph of $y=x^{2}+b x+b$?
7.8b Solution: Setting the two equal to each other:

$$
\begin{aligned}
x^{2}+b x+b & =1+2 b \\
x^{2}+b x-b-1 & =0 \\
x & =\frac{-b \pm \sqrt{b^{2}-4(1)(-b-1)}}{2} \\
& =\frac{-b \pm \sqrt{b^{2}+4 b+4}}{2} \\
& =\frac{-b \pm(b+2)}{2}
\end{aligned}
$$

The two, when simplified, are $\frac{-b+(b+2)}{2}=1$ and $\frac{-b-(b+2)}{2}=-b-1$. These yield y-values $1+2 b$; therefore the two intersections are $(1,1+2 b$ and $(-b-1,1+2 b)$.
$7.8 \mathbf{c}$ Problem: If a is a constant, where does the line $y=1-a^{2}$ intersect the graph of $y=x^{2}-2 a x+1$?
7.8c Solution: Setting these two equal to each other:

$$
\begin{aligned}
x^{2}-2 a x+1 & =1-a^{2} \\
x^{2}-2 a x+a^{2} & =0 \\
(x-a)^{2} & =0 \\
x & =a
\end{aligned}
$$

Therefore, the point of intersection is $\left(a, 1-a^{2}\right)$ (the y-value determined by $\left.y=1-a^{2}\right)$.
7.8d Problem: Where does the graph of $y=-2 x^{2}+3 x+10$ intersect the graph of $y=x^{2}+x-10$?
7.8d Solution: Setting these two equal to each other;

$$
\begin{aligned}
x^{2}+x-10 & =-2 x^{2}+3 x+10 \\
3 x^{2}-2 x-20 & =0 \\
x & =\frac{-(-2) \pm 2 \sqrt{61}}{2 \cdot 3} \\
& =\frac{1+\sqrt{61}}{3}, \frac{1-\sqrt{61}}{3}
\end{aligned}
$$

These, when rounded, yield -2.2701 and 2.9368. These yield values of $(-2.2701)^{2}+(-2.2701)-10=-7.1167$ and $(2.9368)^{2}+(2.9368)-10=1.5612$. Therefore, the solutions are $(-2.2701,-7.1168)$ and $(2.9368,1.5612)$.

