Collingwood 31

Andre Ye

20 November 2020

7.3a Problem: Sketch the graph of the function $f(x)=x^{2}-3 x+4$ on the interval $-3 \leq x \leq 5$. What is the maximum value of $f(x)$ on that interval? What is the minimum value of $f(x)$ on that interval?
7.3a Solution: The maximum value of x is at $x=-3$. This evaluates to $9+9+4=22$; therefore the maximum value of $f(x)$ is 22 . The minimum value, on the other hand, is the vertex, which is $x=-\frac{b}{2 a}=$ $-\frac{-3}{2}=\frac{3}{2}$. This is $\left(\frac{3}{2}\right)^{2}-3\left(\frac{3}{2}\right)+4=\frac{7}{4}$. Therefore, the max. is 22 and the min. is $\frac{7}{4}$.

7.3b Problem: Sketch the graph of the function $f(x)=x^{2}-3 x+4$ on the interval $2 \leq x \leq 7$. What is the maximum value of $f(x)$ on that interval? What is the minimum value of $f(x)$ on that interval?
7.3b Solution: The maximum is at $x=7$; this value is $49-21+4=32$. The minimum is at the vertex $x=-\frac{b}{2 a}=-\frac{-3}{2}=\frac{3}{2}$; this is less than the lower bound of the domain, $x=2$. Therefore the minimum is $x=2$ with value $4-6+4=-6$. Hence, the max. is 32 and the min. is -6 .

7.3c Problem: Sketch the graph of the function $g(x)=-(x+3)^{2}+3$ on the interval $0 \leq x \leq 4$. What is the maximum value of $g(x)$ on that interval? What is the minimum value of $g(x)$ on that interval?
7.3c Solution: The maximum is the vertex, at $(-3,3)$; this is at a value of x less than the smallest number in the bound. Therefore, the maximum occurs at $x=0$ (the lower bound), which has value $-9+$ $3=-6$. The minimum value is at the upper bound $x=4$, with value $-49+3=-46$. Hence, the max. is -6 and the min. is -46 .

7.4 Problem: If the graph of the quadratic function $f(x)=x^{2}+d x+3 d$ has its vertex on the x-axis, what are the possible values of d ? What if $f(x)=x^{2}+3 d x-d^{2}+1$?
7.4 Solution: If the vertex of $x^{2}+d x+3 d$ is on the x axis, then if written in the form $a(x-h)^{2}+k$, then $k=0$. Therefore, $x^{2}+d x+3 d$ can be factored without any remainder. We know that $a=1$ because the coefficient of the quadratic in standard form for x^{2} is 1 ; therefore the vertex form is $(x-h)^{2}$, which can be expanded as $x^{2}-2 h x+h^{2}$. Aligning this with $x^{2}+d x+3 d$, yields $-2 h=d$ and $h^{2}=3 d$. Combining these two yields $h^{2}=3(-2 h) \rightarrow h^{2}=-6 h \rightarrow h=0,-6$. Therefore:

- When $h=0,(x-h)^{2}=x^{2}$. It is clear that $d=0$.
- When $h=-6,(x-h)^{2}=x^{2}+12 x+36$. It is clear that $d=12$.

Therefore, $d=0$ and 12 .
Considering the latter proposed case, $f(x)=x^{2}+3 d x-d^{2}+1$, we know from the expansion of $(x-h)^{2}$ (as discussed above) that $3 d=-2 h$ and $-d^{2}+1=h^{2}$. Using substitution, $-d^{2}+1=\left(-\frac{3}{2} d\right)^{2} \rightarrow-d^{2}+1=$ $\frac{9}{4} d^{2} \rightarrow \frac{4}{15}=d^{2} \rightarrow d= \pm \frac{2}{\sqrt{15}}$. Therefore, in this case, $d= \pm \frac{2}{\sqrt{15}}$.

