Collingwood 31

Andre Ye

20 November 2020

7.3a Problem: Sketch the graph of the function $f(x) = x^2 - 3x + 4$ on the interval $-3 \le x \le 5$. What is the maximum value of f(x) on that interval? What is the minimum value of f(x) on that interval?

7.3a Solution: The maximum value of x is at x = -3. This evaluates to 9 + 9 + 4 = 22; therefore the maximum value of f(x) is 22. The minimum value, on the other hand, is the vertex, which is $x = -\frac{b}{2a} = -\frac{-3}{2} = \frac{3}{2}$. This is $\left(\frac{3}{2}\right)^2 - 3\left(\frac{3}{2}\right) + 4 = \frac{7}{4}$. Therefore, the maximum is 22 and the min. is $\frac{7}{4}$.

7.3b Problem: Sketch the graph of the function $f(x) = x^2 - 3x + 4$ on the interval $2 \le x \le 7$. What is the maximum value of f(x) on that interval? What is the minimum value of f(x) on that interval?

7.3b Solution: The maximum is at x = 7; this value is 49 - 21 + 4 = 32. The minimum is at the vertex $x = -\frac{b}{2a} = -\frac{-3}{2} = \frac{3}{2}$; this is less than the lower bound of the domain, x = 2. Therefore the minimum is x = 2 with value 4 - 6 + 4 = -6. Hence, the max. is 32 and the min. is -6.

7.3c Problem: Sketch the graph of the function $g(x) = -(x+3)^2 + 3$ on the interval $0 \le x \le 4$. What is the maximum value of g(x) on that interval? What is the minimum value of g(x) on that interval?

7.3c Solution: The maximum is the vertex, at (-3,3); this is at a value of x less than the smallest number in the bound. Therefore, the maximum occurs at x = 0 (the lower bound), which has value -9 + 3 = -6. The minimum value is at the upper bound x = 4, with value -49 + 3 = -46. Hence, the max. is -6 and the min. is -46].

7.4 Problem: If the graph of the quadratic function $f(x) = x^2 + dx + 3d$ has its vertex on the x-axis, what are the possible values of d? What if $f(x) = x^2 + 3dx - d^2 + 1$?

7.4 Solution: If the vertex of $x^2 + dx + 3d$ is on the x axis, then if written in the form $a(x - h)^2 + k$, then k = 0. Therefore, $x^2 + dx + 3d$ can be factored without any remainder. We know that a = 1 because the coefficient of the quadratic in standard form for x^2 is 1; therefore the vertex form is $(x - h)^2$, which can be expanded as $x^2 - 2hx + h^2$. Aligning this with $x^2 + dx + 3d$, yields -2h = d and $h^2 = 3d$. Combining these two yields $h^2 = 3(-2h) \rightarrow h^2 = -6h \rightarrow h = 0, -6$. Therefore:

- When h = 0, $(x h)^2 = x^2$. It is clear that d = 0.
- When h = -6, $(x h)^2 = x^2 + 12x + 36$. It is clear that d = 12.

Therefore, d = 0 and 12.

Considering the latter proposed case, $f(x) = x^2 + 3dx - d^2 + 1$, we know from the expansion of $(x - h)^2$ (as discussed above) that 3d = -2h and $-d^2 + 1 = h^2$. Using substitution, $-d^2 + 1 = \left(-\frac{3}{2}d\right)^2 \rightarrow -d^2 + 1 = \frac{9}{4}d^2 \rightarrow \frac{4}{15} = d^2 \rightarrow d = \pm \frac{2}{\sqrt{15}}$. Therefore, in this case, $d = \pm \frac{2}{\sqrt{15}}$.