Collingwood 30

Andre Ye

17 November 2020

7.1 Context: Write the following quadratic functions in vertex form, find the vertex, the axis of symmetry and sketch a rough graph.

7.1a Problem: $f(x) = 2x^2 - 16x + 41$.

7.1a Solution: Rewriting in vertex form:

$$f(x) = 2x^{2} - 16x + 41$$

= 2(x² - 8x + 16) + 41 - 32
= 2(x - 4)^{2} + 9

From vertex form, we see that the vertex is (4,9), from which it can be derived that the axis of symmetry is x = 4. Therefore, the vertex form is $2(x-4)^2 - 9$, the axis of symmetry is x = 4, and the vertex is (4,9).

7.1b Problem: $f(x) = 3x^2 - 15x - 77$.

7.1b Solution: Rewriting in vertex form:

$$f(x) = 3x^2 - 15x - 77$$

= $3(x^2 - 5x + \frac{25}{4}) - 77 - \frac{75}{4}$
= $3(x^2 - \frac{5}{2})^2 - \frac{383}{4}$

From vertex form, we see that the vertex is $(\frac{5}{2}, -\frac{383}{4})$, from which it can be derived that the axis of symmetry is $x = \frac{5}{2}$. Therefore, the vertex form is $3(x^2 - \frac{5}{2})^2 - \frac{383}{4}$, the axis of symmetry is $x = \frac{5}{2}$, and the vertex is $\left[\frac{5}{2}, -\frac{383}{4}\right]$.

7.1c Problem: $f(x) = x^2 - \frac{3}{7}x + 13$.

7.1c Solution: Rewriting in vertex form:

$$f(x) = x^2 - \frac{3}{7}x + 13$$

= $x^2 - \frac{3}{7}x + \frac{9}{196} + 13 - \frac{9}{196}$
= $\left(x - \frac{3}{14}\right)^2 + \frac{2539}{196}$

From vertex form, we see that the vertex is $\left(\frac{3}{14}, \frac{2539}{196}\right)$, from which it can be derived that the axis of symmetry is $x = \frac{3}{14}$. Therefore, the vertex form is $\left(x - \frac{3}{14}\right)^2 + \frac{2539}{196}$, the axis of symmetry is $x = \frac{3}{14}$, and the vertex is $\left[\left(\frac{3}{14}, \frac{2539}{196}\right)\right]$.

7.1d Problem: $f(x) = 2x^2$.

7.1d Solution: Rewriting in vertex form:

$$f(x) = 2x^{2}$$

= 2(x - 0)^{2} + 0

From vertex form, we see that the vertex is (0,0), from which it can be derived that the axis of symmetry is x = 0. Therefore, the vertex form is $2(x-0)^2 + 0$, the axis of symmetry is x = 0, and the vertex is (0,0).

7.1e Problem: $f(x) = \frac{1}{100}x^2$.

7.1e Solution: Rewriting in vertex form:

$$f(x) = \frac{1}{100}x^2$$
$$= \frac{1}{100}(x-0)^2 + 0$$

From vertex form, we see that the vertex is (0,0), from which it can be derived that the axis of symmetry is x = 0. Therefore, the vertex form is $\boxed{\frac{1}{100}(x-0)^2 + 0}$, the axis of symmetry is $\boxed{x=0}$, and the vertex is $\boxed{(0,0)}$.

Figure 1: Red: $2x^2 - 16x + 41$, Blue: $3x^2 - 15x - 77$, Green: $x^2 - \frac{3}{7}x + 13$, Purple: $2x^2$, Black: $\frac{1}{100}x^2$.

7.2 Context: In each case, find a quadratic function whose graph passes through the given points:

7.2a Problem: (0,0), (1,1) and (3,-1).

7.2a Solution: Consider coefficients a, b, and c in the quadratic equation $ax^2 + bx + c$. We have three systems of equations:

$$\begin{cases} a0 + b0 + c = 0 \to c = 0\\ a1 + b1 + c = 1 \to a + b + c = 1\\ a9 + b3 + c = -1 \to 9a + 3b + c = -1 \end{cases}$$

We know that c = 0, so we can simplify the other two equations as a + b = 1 and 9a + 3b = -1. We can substitute b in the latter equation with b = 1 - a (derived from the first equation) to form $9a + 3(1 - a) = -1 \rightarrow 9a + 3 - 3a = -1 \rightarrow 6a = -4 \rightarrow a = -\frac{2}{3}$. Then, b is equal to $1 - a = \frac{5}{3}$. Therefore, the quadratic is $y = -\frac{2}{3}x^2 + \frac{5}{3}x$.

7.2b Problem: (-1, 1), (1, -2) and (3, 4).

7.2b Solution: Consider coefficients a, b, and c in the quadratic equation $ax^2 + bx + c$. We have three systems of equations:

$$\begin{cases} a(1) + b(-1) + c = 1 \to a - b + c = 1\\ a1 + b1 + c = -2 \to a + b + c = -2\\ a9 + b3 + c = 4 \to 9a + 3b + c = 4 \end{cases}$$

We can subtract the first equation from the second to produce $2b = -3 \rightarrow b = -\frac{3}{2}$. Therefore, we have that $a - \frac{3}{2} + c = -2 \rightarrow a + c = -\frac{1}{2}$ and $9a + 3(-\frac{3}{2}) + c = 4 \rightarrow 9a + c = \frac{17}{2}$. Subtracting this from the first derived equation yields $8a = \frac{18}{2} = 9 \rightarrow a = \frac{9}{8}$. Plugging this into $a + c = -\frac{1}{2}$, it is apparent that $-\frac{13}{8}$. Therefore, the quadratic is $y = \frac{9}{8}x^2 - \frac{3}{2}x - \frac{13}{8}$.

7.2c Problem: (2,1), (3,2) and (5,1).

7.2c Solution: Consider coefficients a, b, and c in the quadratic equation $ax^2 + bx + c$. We have three systems of equations:

$$\begin{cases} a4+b2+c = 1 \to 4a+2b+c = 1\\ a9+b3+c = 2 \to 9a+3b+c = 2\\ a25+b5+c = 1 \to 25a+5b+c = 4 \end{cases}$$

Subtracting the second from the first yields 5a + b = 1, and subtracting the third from the second yields 16a + 2b = -1. Multiplying the first derived equation yields 10a + 2b = 2. Subtracting this from the second derived equation yields 6a = -3, hence $a = -\frac{1}{2}$. Thus, $5\left(-\frac{1}{2}\right) + b = 1 \rightarrow -\frac{5}{2} + b = 1 \rightarrow b = \frac{7}{2}$. Therefore, $4\left(-\frac{1}{2}\right) + 2\left(\frac{7}{2}\right) + c = 1 \rightarrow -\frac{4}{2} + \frac{14}{2} + c = 1 \rightarrow -2 + 7 + c = 1 \rightarrow c = -4$. Therefore, the quadratic is $y = -\frac{1}{2}x^2 + \frac{7}{2}x - 4$.

7.2d Problem: (0, 1), (1, 1) and (1, 3).

7.2d Solution: Consider coefficients a, b, and c in the quadratic equation $ax^2 + bx + c$. We have three systems of equations:

$$\begin{cases} a0 + b0 + c = 1 \to c = 1\\ a1 + b1 + c = 1 \to a + b + c = 1\\ a1 + b1 + 1 = 9 \to a + b + c = 9 \end{cases}$$

Setting the second and third equations equal to each other yields 1 = 9, which is not true. Therefore, there are no solutions.