Collingwood 29

Andre Ye

16 November 2020
6.13a Problem: Simplify as far as possible: $\frac{1}{1+\frac{1}{a}}-\frac{a}{a+1}$.
6.13a Solution: The expression can be simplified as:

$$
\begin{aligned}
& \frac{1}{1+\frac{1}{a}}-\frac{a}{a+1} \\
= & \frac{1}{1+\frac{1}{a}} \cdot \frac{a}{a}-\frac{a}{a+1} \\
= & \frac{a}{a+1}-\frac{a}{a+1} \\
= & 0
\end{aligned}
$$

The simplified expression is 0 .
6.13b Problem: Find a, b, c that simultaneously satisfy these three equations: $a+b-c=5,2 a-3 b+c=4$, $a+b+c=-1$.
6.13b Solution: We can find the value of c as follows:

$$
\begin{aligned}
(a+b-c) & =5 \\
-(a+b+c) & =-(-1) \\
-2 c & =6 \\
c & =-3
\end{aligned}
$$

Then, we find $a+b-c=5$ and be written as $a+b+3=5 \rightarrow a+b=2 \rightarrow 2 a+2 b=4$ and $2 a-3 b+c=4$ and be written as $2 a-3 b-3=4 \rightarrow 2 a-3 b=7$. We can subtract these equations to form $5 b=-3 \rightarrow b=-\frac{3}{5}$. Plugging this into $a+b=2$, we find that $a=2+\frac{3}{5}=\frac{13}{5}$. Therefore, the solutions are:

- $a=\frac{13}{5}$
- $b=-\frac{3}{5}$
- $c=-3$

