Collingwood 27

Andre Ye

9 November 2020
6.9 Problem: A baseball diamond is a square with sides of length 90 ft . Assume Edgar hits a home run and races around the bases (counterclockwise) at a speed of $18 \mathrm{ft} / \mathrm{sec}$. Express the distance between Edgar and home plate as a function of time t. (Hint: This will be a multi-part function.) Try to sketch a graph of this function.
6.9 Solution: Let the home plate be located at $(0,0)$, and let us orient the square baseball field such that first base is located at $(90,0)$. Thus, we can construct equations representing Edgar's location at a time t :

- From $0 \leq t<5$, Edgar runs horizontally along $y=0$. Thus his position can be represented by $(18 t, 0)$.
- From $5 \leq t<10$, Edgar runs vertically along $x=90$. This position can be represented by $(90,18(t-5))$.
- From $10 \leq t<15$, Edgar runs horizontally along $y=90$. Thus his position can be represented by ($90-18(t-10), 90)$.
- From $15 \leq t \leq 20$, Edgar runs vertically along $x=0$. This position can be represented by ($0,90-$ $18(t-15))$.

Thus, using the distance formula, the multipart function $d(t)$ representing Edgar's distance at time t (in seconds) from the home plate can be constructed as:

$$
d(t)= \begin{cases}18 t & \text { if } 0 \leq t<5 \tag{1}\\ \sqrt{90^{2}+(18(t-5))^{2}} & \text { if } 5 \leq t<10 \\ \sqrt{(90-18(t-10))^{2}+90^{2}} & \text { if } 10 \leq t<15 \\ 90-18(t-15) & \text { if } 15 \leq t \leq 20\end{cases}
$$

The graph of this function is:

6.10 Context: Pagliacci Pizza has designed a cardboard delivery box from a single piece of cardboard, as pictured.
6.10a Problem: Find a polynomial function $v(x)$ that computes the volume of the box in terms of x. What is the degree of v ?
6.10a Solution: The box has three attributes: the length, the width, and the height, which determine its volume.

- Length of the box can be found by considering half of it, which has length 25 . Subtracting one square yields a length of $25-x$.
- Width of the box can be found by $20-2 x$, as demonstrated in the diagram.
- Height of the box is simply x.

Multiplying these together yields $(25-x) \cdot(20-2 x) \cdot(x)=x\left(2 x^{2}-70 x+500\right)=2 x^{3}-70 x^{2}+500 x$. Therefore, the polynomial representing the volume of the box in terms of x is $v(x)=2 x^{3}-70 x^{2}+500 x$ with degree 3 .
6.10b Problem: Find a polynomial function $a(x)$ that computes the exposed surface area of the closed box in terms of x. What is the degree of a ? What are the explicit dimensions if the exposed surface area of the closed box is 600 sq. inches?
6.10b Solution: To find the exposed surface area, we need to add a few components together.

- There are four horizontal rectangles depicted in the diagram, but only two are exposed. These each of the width $25-x$ and height x; thus their area is $(25-x) \cdot x \cdot 4=2\left(-x^{2}+25 x\right)=-2 x^{2}+50 x$.
- There are two vertical rectangles in the diagram. These each of width x and height $20-2 x$; thus their area is $x \cdot(20-2 x) \cdot 2=2\left(-2 x^{2}+20 x\right)=-4 x^{2}+40 x$.
- There are two large rectangles in the diagram. These each have width $25-x$ and height $20-2 x$; thus their area is $(25-x) \cdot(20-2 x) \cdot 2=2\left(2 x^{2}-70 x+500\right)=4 x^{2}-140 x+1000$.

Adding these three elements together yields a polynomial solution: $\left(-2 x^{2}+50 x\right)+\left(-4 x^{2}+40 x\right)+\left(4 x^{2}-140 x+1000\right)=$ $-2 x^{2}-50 x+1000$. Thus, the polynomial is $a(x)=-2 x^{2}-50 x+1000$ with degree 2 . To find when the exposed surface area is equal to 600 square inches, we can write and solve the following equation:

$$
\begin{aligned}
-2 x^{2}-50 x+1000 & =600 \\
-2 x^{2}-50 x+400 & =0 \\
2 x^{2}+50 x-400 & =0 \\
x^{2}+25 x-200 & =0 \\
x & =\frac{-25 \pm \sqrt{25^{2}-4(1)(-200)}}{2(1)} \\
& =\frac{-25 \pm 5 \sqrt{57}}{2}
\end{aligned}
$$

The height (which is x) cannot be negative, so the solution is $\frac{-25+5 \sqrt{57}}{2} \approx 6.374586$. Therefore, we can calculate the dimensions of the box to be:

- Height $=x \approx 6.374586$ inches
- Length $=25-x \approx 18.625414$ inches
- Width $=20-2 x \approx 7.250828$ inches

Thus, the dimensions of the box are $6.374586 \times 18.625414 \times 7.250828$ inches.

