Collingwood 25

Andre Ye

9 November 2020
6.5 Problem: Express the area of the shaded region below as a function of x. The dimensions in the figure are centimeters.
6.5 Solution: Let a coordinate system be imposed onto the trapezoid such that its bottom left point is at $(0,0)$. Therefore, the top left point is located at $(0,3)$, the bottom right point is located at $(6,0)$, and the top point is located at $(6,5)$. The line at the top of the diagram can be represented, then, with equation $y=\frac{1}{3} x+3$. Consider the re-sizable trapezoid from a 90 -degree tilted angle, in which the diagram is a trapezoid with top base length of 3 , bottom base length of $y=\frac{1}{3} x+3$, and a height of x. The maximum height of the trapezoid is 6 units.

The area for a trapezoid is given by the sum of the two bases multiplied by the height, divided by two. This is $\frac{\left(3+\frac{1}{3} x+3\right) x}{2}=\frac{\left(6+\frac{1}{3} x\right) x}{2}=\frac{\frac{1}{3} x^{2}+6 x}{2}=\frac{1}{6} x^{2}+\frac{1}{3}$. Thus, the area of the shaded region is $\frac{1}{6} x^{2}+\frac{1}{3} \mathrm{~cm}^{2}$, with domain $0 \leq x \leq 6$.
6.6 Context: Pizzeria Buonapetito makes a triangular-shaped pizza with base width of 30 inches and height 20 inches as shown. Alice wants only a portion of the pizza and does so by making a vertical cut through the pizza and taking the shaded portion. Letting x be the bottom length of Alice's portion and y be the length of the cut as shown, answer the following questions:
6.6a Problem: Find a formula for y as a multipart function of x, for $0 \leq x \leq 30$. Sketch the graph of this function and calculate the range.
6.6a Solution: We must treat the triangle in two parts: a right triangle for $x \leq 10$, which will be referred to as triangle A, and another for $x>10$, which will be referred to as triangle B. The hypotenuse of A can be found by imposing it on a coordinate system; let the bottom left vertex be $(0,0)$ and the top right vertex be $(10,20)$. Thus, the line representing this hypotenuse is $y=2(x-10)+20$. Similarly, the hypotenuse of B can be found by imposing it on a coordinate system; let the top left vertex be $(10,20)$ and the bottom right vertex be $(30,0)$. Thus, the line representing this hypotenuse is $y=-(x-30)=-x+30$. Our multi-part function is then:

$$
y= \begin{cases}2(x-10)+20 & \text { if } 0 \leq x \leq 10 \tag{1}\\ -x+30 & \text { if } 10<x<30\end{cases}
$$

The minimum value of y is 0 , and the maximum is 20 (at its peak). Thus, the range of y is $0 \leq y \leq 20$.

6.6b Problem: Find a formula for the area of Alice's portion as a multi-part function of x, for $0 \leq x \leq 30$.
6.6b Solution: We have already defined the height of the triangle at a certain value of x for sub-triangles A and B. If $x \leq 10$, the area is simply the fraction of triangle A that has been cut. As the height of the triangle is given by $2(x-10)+20=2 x$, and the equation for the area of a triangle is $\frac{b h}{2}$, where b is the length of the base and h is the length of the height, the area comes out to be $\frac{x \cdot 2 x}{2}=x^{2}$ units squared.

If $x>10$, the area is the complete area of A plus the area of the trapezoid formed by the cut part of B. The maximum area of triangle A, at $x=10$, is 100 units squared. The area of a trapezoid is $\frac{(20-x+30)(x-10)}{2}=$ $\frac{-x^{2}+60 x-500}{2}=-\frac{1}{2} x^{2}+30 x-250$. Adding this to the area of triangle A yields $-\frac{1}{2} x^{2}+30 x-150$.

Therefore, the multi-part formula of the area at $x, a(x)$, is:

$$
a(x)= \begin{cases}x^{2} & \text { if } 0 \leq x \leq 10 \tag{2}\\ -\frac{1}{2} x^{2}+30 x-150 & \text { if } 10<x<30\end{cases}
$$

6.6c Problem: If Alice wants her portion to have half the area of the pizza, where should she make the cut?
6.6c Solution: The total area of the triangle is $\frac{30 \cdot 20}{2}=300$ units squared. Thus, we need to find the value of x such that $a(x)=150$. We need to solve for both equations:

$$
\begin{aligned}
x^{2} & =150 \\
x & =\sqrt{150}=5 \sqrt{6} \approx 12.247
\end{aligned}
$$

This is an invalid solution, because it does not satisfy the requirement $0 \leq x \leq 10$.

$$
\begin{aligned}
-\frac{1}{2} x^{2}+30 x-150 & =150 \\
-x^{2}+60 x-300 & =300 \\
x^{2}-60 x+300 & =-300 \\
x^{2}-60 x+600 & =0 \\
x & =\frac{60 \pm \sqrt{3600-4(1)(600)}}{2} \\
& =30 \pm 10 \sqrt{3} \approx 12.6795 \text { or } 47.3205
\end{aligned}
$$

The latter solution does not satisfy $10<x \leq 30$; therefore the solution is $x=30-10 \sqrt{3} \approx 12.6795$.

