Collingwood 24

Andre Ye

8 November 2020
6.3 Context: Solve each of the following equations for x.
6.3a Problem: $g(x)=17$, where $g(x)=|3 x+5|$.
6.3a Solution: There are two equations that need to be solved for:

$$
\begin{aligned}
17 & =3 x+5 \\
12 & =3 x \\
x & =4
\end{aligned}
$$

One acceptable value of x is 4 .

$$
\begin{aligned}
-17 & =3 x+5 \\
-22 & =3 x \\
-\frac{22}{3} & =x
\end{aligned}
$$

Hence, the two solutions are $x=4$ and $x=-\frac{22}{3}$.
6.3b Problem: $f(x)=1.5$ where

$$
f(x)= \begin{cases}2 x & \text { if } x<3 \tag{1}\\ 4-x & \text { if } x \geq 3\end{cases}
$$

6.3b Solution: There are two equations that need to be solved for:

$$
\begin{aligned}
& \frac{3}{2}=2 x \\
& \frac{3}{4}=x
\end{aligned}
$$

This satisfies the inequality $x<3$.

$$
\begin{aligned}
& \frac{3}{2}=4-x \\
& x=4-\frac{3}{2} \\
& x=\frac{5}{2}
\end{aligned}
$$

This result does not satisfy the inequality $x \geq 3$. Therefore, the one solution is $x=\frac{3}{4}$.
6.3c Problem: $h(x)=-1$ where

$$
f(x)= \begin{cases}-8-4 x & \text { if } x \leq-2 \tag{2}\\ 1+\frac{1}{3} x & \text { if } x>-2\end{cases}
$$

6.3b Solution: There are two equations that need to be solved for:

$$
\begin{aligned}
-8-4 x & =-1 \\
-4 x & =7 \\
x & =-\frac{7}{4}
\end{aligned}
$$

This does not satisfy the inequality $x \leq-2$.

$$
\begin{aligned}
1+\frac{1}{3} x & =-1 \\
\frac{1}{3} x & =-2 \\
x & =-6
\end{aligned}
$$

This result does not satisfy the inequality $x>-2$. Therefore, there are no solutions.
6.4a Problem: Let $f(x)=x+|2 x-1|$. Find all solutions to the equation $f(x)=8$.
6.4a Solution: We can rewrite this as $x+|2 x-1|=8 \rightarrow|2 x-1|=8-x$. There are two equations that need to be solved for:

$$
\begin{aligned}
2 x-1 & =8-x \\
3 x & =9 \\
x & =3
\end{aligned}
$$

One solution is $x=3$.

$$
\begin{aligned}
2 x-1 & =-(8-x) \\
2 x-1 & =-8+x \\
x & =-7
\end{aligned}
$$

Another solution is $x=-7$. Thus, the two solutions are $x=3$ and $x=-7$.
6.4b Problem: Let $g(x)=3 x-3+|x+5|$. Find all values of a which satisfy the equation $g(a)=2 a+8$.
6.4b Solution: $g(a)=3 a-3+|a+5|$; thus the equation becomes $3 a-3+|a+5|=2 a+8$. We can rewrite this as $|a+5|=2 a+8-3 a+3$. We need to solve for two equations:

$$
\begin{aligned}
a+5 & =2 a+8-3 a+3 \\
a+5 & =-a+11 \\
2 a & =6 \\
a & =3
\end{aligned}
$$

Thus, one solution is $a=3$.

$$
\begin{aligned}
a+5 & =-(2 a+8-3 a+3) \\
a+5 & =-(-a+11) \\
a+5 & =a-11 \\
0 & \neq-16
\end{aligned}
$$

This statement is not true; thus the only solution is $a=3$.
6.4c Problem: Let $h(x)=|x|-3 x+4$. Find all solutions to the equation $h(x-1)=x-2$.
6.4c Solution: $h(x-1)=|x-1|-3(x-1)+4=|x-1|-3 x+7$; thus the equation becomes $|x-1|-3 x+7=x-2$, which can be rewritten as $|x-1|=x-2+3 x-7$. We need to solve for two equations:

$$
\begin{aligned}
x-1 & =x-2+3 x-7 \\
x-1 & =4 x-9 \\
-3 x & =-8 \\
x & =\frac{8}{3}
\end{aligned}
$$

Thus, one solution is $a=3$.

$$
\begin{aligned}
x-1 & =-(x-2+3 x-7) \\
x-1 & =-(4 x-9) \\
x-1 & =-4 x+9 \\
5 x & =10 \\
x & =2
\end{aligned}
$$

When plugging in $x=2$, the result is $|2-1|-3(2-1)+4=2$, when the results should be $x-2 \rightarrow 2-2=0$.
Therefore, the only solution is $x=\frac{8}{3}$.

