Collingwood 23

Ande

November 2020
6.1 Context: The absolute value function is defined by a multipart rule. The graph of the absolute value function is pictured below.
6.1a Problem: Calculate: $|0|,|2|,|-3|$.

6.1a Solution:

- $|0|=0$
- $|2|=2$
- $|-3|=3$
6.1b Problem: Solve for $x:|x|=4 ;|x|=0,|x|=-1$.

6.1b Solution:

- $|x|=4: x$ can be either 4 or -4 .
- $|x|=0: x$ must be 0 .
- $|x|=-1$: There are no solutions of x.
6.1c Problem: Sketch the graph of $y=\frac{1}{2} x+2$ and $y=|x|$ in the same coordinate system. Find where the two graphs intersect, label the coordinates of these point(s), then find the area of the region bounded by the two graphs.
6.1c Solution: The graph is as below with $y=\frac{1}{2} x+2$ in red and $y=|x|$ in blue. We need to solve for the intersection of the line $y=\frac{1}{2} x+2$ and $y=x$ and the intersection of the line $y=\frac{1}{2} x+2$ and $y=-x$, since these are the components of the $y=|x|$ function. The third vertex is simply $(0,0)$.

Finding one intersection point:

$$
\begin{aligned}
x & =\frac{1}{2} x+2 \\
\frac{1}{2} x & =2 \\
x & =4 \\
y & =4
\end{aligned}
$$

Thus, one point of the formed triangle is $(4,4)$. Finding the second intersection point:

$$
\begin{aligned}
-x & =\frac{1}{2} x+2 \\
-\frac{3}{2} x & =2 \\
x & =-\frac{4}{3} \\
y & =\left|-\frac{4}{3}\right|=\frac{4}{3}
\end{aligned}
$$

Thus, the second point of the triangle is $\left(-\frac{4}{3}, \frac{4}{3}\right)$; the third is $(0,0)$. Using the shoelace algorithm, we can write the coordinates in shoelace form:

0	0
$-\frac{4}{3}$	$\frac{4}{3}$
4	4
0	0

Cross multiplying and summing from top left to bottom right yields $-\frac{16}{3}$, cross multiplying and summing from top right to bottom left yields $\frac{16}{3}$. The difference between the two sums is $\frac{32}{3}$. Dividing by two yields an area of $\frac{16}{3}$ square units.
6.2 Context: For each of the following functions, graph $f(x)$ and $g(x)=|f(x)|$, and give the multipart rule for $g(x)$.
6.2a Problem: $f(x)=-0.5 x-1$
6.2a Solution: The graph, with $g(x)$ in blue and $f(x)$ in red:

The 'vertex' of the $g(x)$ is simply the x-intercept of $f(x)$, which is $0=-0.5 x-1 \rightarrow x=-2$. The line extending from $(-2,0)$ to the right of $g(x)$ is the line of $f(x)$, reflected over the x axis. Thus, its slope is simply the negative of that of $f(x)$, which comes out to be 0.5 , and the reflection of the y-intercept from $(0,-1)$ over the x-axis is $(0,1)$. Thus the equation of the right segment is $0.5 x+1$.

$$
g(x)= \begin{cases}-0.5 x-1 & \text { if } x<-2 \tag{1}\\ 0.5 x+1 & \text { if } x \geq-2\end{cases}
$$

6.2b Problem: $f(x)=2 x-5$
6.2b Solution: The graph, with $g(x)$ in blue and $f(x)$ in red:

The 'vertex' of the $g(x)$ is simply the x-intercept of $f(x)$, which is $0=2 x-5 \rightarrow x=\frac{5}{2}$. The line extending from $(-2.5,0)$ to the left of $g(x)$ is the line of $f(x)$, reflected over the x axis. Thus, its slope is simply the negative of that of $f(x)$, which comes out to be -2 , and the reflection of the y-intercept from $(0,-5)$ over the x-axis is $(0,5)$. Thus the equation of the right segment is $-2 x+5$.

$$
g(x)= \begin{cases}2 x-5 & \text { if } x>2.5 \tag{2}\\ -2 x+5 & \text { if } x \leq 2.5\end{cases}
$$

6.2c Problem: $f(x)=x+3$
6.2b Solution: The graph, with $g(x)$ in blue and $f(x)$ in red:

The 'vertex' of the $g(x)$ is simply the x-intercept of $f(x)$, which is $0=x+3 \rightarrow x=-3$. The line extending from $(-3,0)$ to the left of $g(x)$ is the line of $f(x)$, reflected over the x axis. Thus, its slope is simply the
negative of that of $f(x)$, which comes out to be -1 , and the reflection of the y-intercept from $(0,3)$ over the x-axis is $(0,-3)$. Thus the equation of the right segment is $-x-3$.

$$
g(x)= \begin{cases}x+3 & \text { if } x>2.5 \tag{3}\\ -x-3 & \text { if } x \leq 2.5\end{cases}
$$

