Collingwood 19

Andre Ye

November 2020
5.1 Context: For each of the following functions, find the expression for $\frac{f(x+h)-f(x)}{h}$. Simplify each of your expressions far enough so that plugging in $h=0$ would be allowed.
5.1a Problem: $f(x)=x^{2}-2 x$.

5.1a Solution:

$$
\begin{aligned}
f(x) & =x^{2}-2 x \\
\frac{f(x+h)-f(x)}{h} & =\frac{\left((x+h)^{2}-2(x+h)\right)-\left(x^{2}-2 x\right)}{h} \\
& =\frac{h^{2}+2 h x-2 h}{h} \\
& =h+2 x-2
\end{aligned}
$$

Thus, the simplified solution is $h+2 x-2$.
5.1b Problem: $f(x)=2 x+3$.

5.1b Solution:

$$
\begin{aligned}
f(x) & =2 x+3 \\
\frac{f(x+h)-f(x)}{h} & =\frac{(2(x+h)+3)-(2 x+3)}{h} \\
& =\frac{2 h}{h} \\
& =2
\end{aligned}
$$

Thus, the simplified solution is 2 .
5.1c Problem: $f(x)=x^{2}-3$.

5.1c Solution:

$$
\begin{aligned}
f(x) & =x^{2}-3 \\
\frac{f(x+h)-f(x)}{h} & =\frac{\left((x+h)^{2}-3\right)-\left(x^{2}-3\right)}{h} \\
& =\frac{h^{2}+2 h x}{h} \\
& =h+2 x
\end{aligned}
$$

Thus, the simplified solution is $h+2 x$.
5.1d Problem: $f(x)=4-x^{2}$.

5.1d Solution:

$$
\begin{aligned}
f(x) & =4-x^{2} \\
\frac{f(x+h)-f(x)}{h} & =\frac{\left(4-(x+h)^{2}\right)-\left(4-x^{2}\right)}{h} \\
& =\frac{-h^{2}-2 h x}{h} \\
& =-h-2 x
\end{aligned}
$$

Thus, the simplified solution is $-h-2 x$.
5.1e Problem: $f(x)=-\pi x^{2}-\pi^{2}$.

5.1e Solution:

$$
\begin{aligned}
f(x) & =-\pi x^{2}-\pi^{2} \\
\frac{f(x+h)-f(x)}{h} & =\frac{\left(-\pi(x+h)^{2}-\pi^{2}\right)-\left(-\pi x^{2}-\pi^{2}\right)}{h} \\
& =\frac{-\pi h^{2}-2 \pi h x}{h} \\
& =-\pi h-2 \pi x
\end{aligned}
$$

Thus, the simplified solution is $-\pi h-2 \pi x$.
5.1f Problem: $f(x)=\sqrt{x-1}$.

5.1f Solution:

$$
\begin{aligned}
f(x) & =\sqrt{x-1} \\
\frac{f(x+h)-f(x)}{h} & =\frac{(\sqrt{(x+h)-1})-(\sqrt{x-1})}{h} \\
& =\frac{(\sqrt{(x+h)-1})-(\sqrt{x-1})}{h} \cdot \frac{(\sqrt{(x+h)-1})+(\sqrt{x-1})}{(\sqrt{(x+h)-1})+(\sqrt{x-1})} \\
& =\frac{\sqrt{(x+h)-1})^{2}-(\sqrt{x-1})^{2}}{h \cdot(\sqrt{(x+h)-1})+(\sqrt{x-1})} \\
& =\frac{h}{h \cdot(\sqrt{(x+h)-1})+(\sqrt{x-1})} \\
& =\frac{1}{\sqrt{(x+h)-1}+\sqrt{x-1}}
\end{aligned}
$$

5.2 Problem: Here are the graphs of two linear functions on the domain $0 \leq x \leq 20$. Find the formula for each of the rules $y=f(x)$ and $y=g(x)$. Find the formula for a NEW function $v(x)$ that calculates the
vertical distance between the two lines at x. Explain in terms of the picture what $v(x)$ is calculating. What is $v(5)$? What is $\mathrm{v}(20)$? What are the smallest and largest values of $v(x)$ on the domain $0 \leq x \leq 20$?
5.2 Solution: The two lines extend from the point $(0,24)$ to $(20,60)$ and from point $(0,4)$ to point $(20,20)$. Thus the two slopes of the lines are $\frac{9}{5}$ and $\frac{4}{5}$, respectively; the equations of the two lines come out to be $g(x)=\frac{9}{5} x+24$ and $f(x)=\frac{4}{5} x+4$. Thus the distance between the two lines is simply the higher one minus the smaller one; this is $v(x)=g(x)-f(x)=\left(\frac{9}{5} x+24\right)-\left(\frac{4}{5} x+24\right)=x+20$. Thus, $v(x)=x+20$. In terms of visual representations, $v(x)$ represents the length of a vertical bar between the two lines at a certain location $x . \quad v(5)=25$ and $v(20)=40$. The minimum and maximum values of $v(x)$ are at $x=0$ and $x=20$ (at the extremes of the domain), respectively. Thus comes to be minimum 20 and maximum 40 .

