Collingwood 18

Andre

28 October 2020
4.14 Problem: Juliet and Mercutio are moving at constant speeds in the $x y$-plane. They start moving at the same time. Juliet starts at the point $(0,-6)$ and heads in a straight line toward the point $(10,5)$, reaching it in 10 seconds. Mercutio starts at $(9,-14)$ and moves in a straight line. Mercutio passes through the same point on the x axis as Juliet, but 2 seconds after she does. How long does it take Mercutio to reach the y-axis?
4.14 Solution: Juliet begins at the point $(0,-6)$ and moves towards $(10,5)$; thus she travels 10 units right and 11 units up in 10 seconds. This means that she travels 1 unit right and $\frac{11}{10}$ units up every second. As a line, she travels with slope $\frac{5-(-6)}{10-0}=\frac{11}{10}$; thus her path can be represented by $y=\frac{11}{10} x-6$. Thus she crosses the x-axis at point $0=\frac{11}{10} x-6 \rightarrow \frac{11}{10} x=6 \rightarrow x=\frac{60}{11}$. Her location can be modeled with $\left(t,-6+\frac{11}{10} t\right)$ at every second t. She takes $0=-6+\frac{11}{10} t \rightarrow t=\frac{60}{11}$ seconds to reach the y-intercept.

Hence, Mercutio travels from $(9,-14)$ to the point $\left(\frac{60}{11}, 0\right) 2$ seconds after Juliet does, which comes out to be $\frac{60}{11}+2=\frac{82}{11}$ seconds. In terms of x-axis movement, Mercutio moves $9-\frac{60}{11}=\frac{99}{11}-\frac{60}{11}=\frac{39}{11}$ units left; he takes $\frac{82}{11}$ seconds to perform this movement; hence he moves $\frac{39}{11} \cdot \frac{11}{82}=\frac{39}{82}$ units left every second. Thus, we can represent his x-coordinate location as $9-\frac{39}{82} t$ after t seconds. For him, to reach the y-axis, we must find the point for which his x-location equals 0 .

$$
\begin{aligned}
9-\frac{39}{82} t & =0 \\
\frac{39}{82} t & =9 \\
t & =9 \cdot \frac{82}{39} \approx 18.9231
\end{aligned}
$$

Thus, Mercutio takes about 18.9231 seconds.
4.15a Problem: Solve for x : $\frac{1}{x}-\frac{1}{x+1}=3$.

4.15a Solution:

$$
\begin{aligned}
\frac{1}{x}-\frac{1}{x+1} & =3 \\
1-\frac{x}{x+1} & =3 x \\
x+1-x & =3 x(x+1) \\
1 & =3 x^{2}+3 x \\
3 x^{2}+3 x-1 & =0 \\
x & =\frac{-3 \pm \sqrt{9-4(3)(-1)}}{2(3)} \\
x & =\frac{-3 \pm \sqrt{21}}{6}
\end{aligned}
$$

Thus, $x=\frac{-3 \pm \sqrt{21}}{6}$.
4.15b Problem: Solve for $t: 2=\sqrt{(1+t)^{2}+(1-2 t)^{2}}$.

4.15b Solution:

$$
\begin{aligned}
2 & =\sqrt{(1+t)^{2}+(1-2 t)^{2}} \\
4 & =(1+t)^{2}+(1-2 t)^{2} \\
4 & =1+2 t+t^{2}+1-4 t+4 t^{2} \\
4 & =5 t^{2}-2 t+2 \\
5 t^{2}-2 t-2 & =0 \\
t & =\frac{2 \pm \sqrt{(-2)^{2}-4(5)(-2)}}{2(5)} \\
t & =\frac{2 \pm 2 \sqrt{11}}{10}
\end{aligned}
$$

Thus, $t=\frac{1 \pm \sqrt{11}}{5}$.
4.15c Problem: Solve for $t: \frac{3}{\sqrt{5}}=\sqrt{(1+t)^{2}+(1-2 t)^{2}}$.

4.15c Solution:

$$
\begin{aligned}
\frac{3}{\sqrt{5}} & =\sqrt{(1+t)^{2}+(1-2 t)^{2}} \\
\frac{9}{5} & =(1+t)^{2}+(1-2 t)^{2} \\
\frac{9}{5} & =5 t^{2}-2 t+2 \\
9 & =25 t^{2}-10 t+10 \\
25 t^{2}-10 t+1 & =0 \\
(5 t-1)^{2} & =0 \\
t & =\frac{1}{5}
\end{aligned}
$$

Thus, $t=\frac{1}{5}$.
4.15d Problem: Solve for $x: 0=\sqrt{(1+t)^{2}+(1-2 t)^{2}}$.

4.15d Solution:

$$
\begin{aligned}
& 0=\sqrt{(1+t)^{2}+(1-2 t)^{2}} \\
& 0=(1+t)^{2}+(1-2 t)^{2} \\
& 0=5 t^{2}-2 t+2
\end{aligned}
$$

The discriminant is $(-2)^{2}-4(5)(2)=-36$. Because the discriminant is negative, there are no real solutions.
4.16a Problem: Solve for x : $x^{4}-4 x^{2}+2=0$.

4.16a Solution:

$$
\begin{aligned}
x^{4}-4 x^{2}+2 & =0 \\
x^{4}-4 x^{2}+4 & =2 \\
\left(x^{2}-2\right)^{2} & =2 \\
x^{2}-2 & = \pm \sqrt{2} \\
x^{2} & = \pm \sqrt{2}+2 \\
x & = \pm \sqrt{ \pm \sqrt{2}+2}
\end{aligned}
$$

Thus, there are four solutions:

- $\sqrt{\sqrt{2}+2}$
- $\sqrt{-\sqrt{2}+2}$
- $-\sqrt{\sqrt{2}+2}$
- $-\sqrt{-\sqrt{2}+2}$
4.16b Problem: Solve for y : $y-2 \sqrt{y}=4$.

4.16b Solution:

$$
\begin{aligned}
y-2 \sqrt{y} & =4 \\
y-2 \sqrt{y}-4 & =0 \\
y-2 \sqrt{y}+1 & =5 \\
(\sqrt{y}-1)^{2} & =5 \\
\sqrt{y}-1 & = \pm \sqrt{5} \\
\sqrt{y} & = \pm \sqrt{5}+1 \\
y & =(\pm \sqrt{5}+1)^{2} \\
y & =(\pm \sqrt{5})^{2}+2(\pm \sqrt{5})+1 \\
y & =5+2(\pm \sqrt{5})+1 \\
y & = \pm 2 \sqrt{5}+6
\end{aligned}
$$

$y=-2 \sqrt{5}+6$ is not valid when plugged back into the equation. Thus, the solution is $y=2 \sqrt{5}+6$.

