Collingwood 17

Andre Ye

27 October 2020
4.12 Context: The infamous crawling tractor sprinkler is located as pictured below, 100 feet South of a 10 ft . wide sidewalk; notice the hose and sidewalk are not perpendicular. Once the water is turned on, the sprinkler waters a circular disc of radius 20 feet and moves North along the hose at the rate of $\frac{1}{2}$ inch/second.
4.12a Problem: Impose a coordinate system. Describe the initial coordinates of the sprinkler and find the equation of the line forming the southern boundary of the sidewalk.
4.12a Solution: Let the intersection of the hose and the southern edge of the sidewalk be the origin $(0,0)$. Then,

- The southern edge of the sidewalk has equation $y=-\frac{1}{5} x$.
- The moving tractor begins at location $(0,-100)$.
- The location of the moving tractor after t minutes is $\left(0, \frac{5}{2} t-100\right)$
- The equation of the circle representing the circular watered zone is $x^{2}+\left(\frac{5}{2} t-100\right)^{2}=400$.
4.12b Problem: After 33 minutes, sketch a picture of the wet portion of the sidewalk; find the length of the wet portion of the Southern edge of the sidewalk.
4.12b Solution: After 33 minutes, utilizing the derived formula for location of the moving tractor, the tractor will be located at $\left(0, \frac{5}{2} \cdot 33-100\right) \rightarrow\left(0,-\frac{35}{2}\right.$, or $(0,-17.5)$. The equation of the circle representing the watered area is thus $x^{2}+(y+17.5)^{2}=400$. To find the two points of the watered area of the Southern edge of the sidewalk, we can find values for which the two equations intersect.

$$
\begin{aligned}
x^{2}+\left(-\frac{1}{5} x+\frac{35}{2}\right)^{2} & =400 \\
x^{2}+\frac{1}{25} x^{2}-7 x+\frac{1225}{4} & =400 \\
26 x^{2}-175 x+\frac{30,625}{4} & =10,000 \\
104 x^{2}-700 x+30,625 & =40,000 \\
104 x^{2}-700 x-9,375 & =0
\end{aligned}
$$

Solving for x :

$$
\begin{aligned}
x & =\frac{700 \pm \sqrt{(-700)^{2}-4(104)(-9,375)}}{2(104)} \\
& =\frac{700 \pm \sqrt{4,390,000}}{208}
\end{aligned}
$$

x comes out to be approximately 13.438619 or -6.707849 . Plugging these into $y=-\frac{1}{5} x$ yields y-values of -2.6877 and 1.3416 , respectively. Hence, the two points are $(13.4386,-2.6877)$ and $(-6.7078,1.3416)$.

The distance between these two points is $\sqrt{(13.4386+6.7078)^{2}+(-2.6877-1.3416)^{2}} \approx 20.5454$. Hence, the length of the Southern edge of the sidewalk that is watered is about 20.55 feet.

4.12c Problem: Find the equation of the line forming the northern boundary of the sidewalk.
4.12c Solution: The northern boundary of the sidewalk is parallel to the southern boundary, it still has slope $-\frac{1}{5}$. We can draw a right triangle between these two lines and label points A, B, and C as in the image below. The distance from A to B is 10 feet, since the sidewalk is 10 feet wide. The line from point A to point B is also perpendicular to the North and South boundaries of the sidewalk. Thus, it has slope 5 , and can be represented with the equation $y=5 x$ (its y-intercept is 0 since it passes through the origin).

Since the line $\overline{A B}$ has a slope of 5 , the ratio of the length of line $\overline{A C}$ to the length of line $\overline{B C}$ is $5: 1$. Thus, we can represent their lengths as $5 x$ and x, respectively. Using the Pythagorean Theorem, the following equation must be true:

$$
\begin{aligned}
25 x^{2}+x^{2} & =10^{2} \\
26 x^{2} & =100 \\
x & =\frac{10}{\sqrt{26}}
\end{aligned}
$$

Thus, the point A lies at location $\left(\frac{10}{\sqrt{26}}, \frac{50}{\sqrt{26}}\right)$ (the y-coordinate was derived from the equation $y=5 x$). Since we know the North boundary of the sidewalk has slope $-\frac{1}{5}$, we can write its equation in point-slope form, we have $y-\frac{50}{\sqrt{26}}=-\frac{1}{5}\left(x-\frac{10}{\sqrt{26}}\right)$. Distributing and simplifying, we get(approximately) $y=-\frac{1}{5} x+10.198$.
4.13 Context: Margot is walking in a straight line from a point 30 feet due east of a statue in a park toward a point 24 feet due north of the statue. She walks at a constant speed of 4 feet per second.
4.13a Problem: Write parametric equations for Margot's position t seconds after she starts walking.
4.13a Solution: Let the statue be located at the origin (0,0). Thus, Margot begins at location (30, 0) and begins walking towards point $(0,24)$. Thus path has slope $-\frac{24}{30}=-\frac{4}{5}$. If we are to visualize a right triangle with vertices:

- Point A fixed at $(30,0)$.
- Point B as Margot's current location. This ends as $(0,24)$.
- Point C as Margot's x-location on the x-axis. This ends as $(0,0)$.
...we can set $A B$ - the hypotenuse of the right triangle - to be 4 , the number of feet she walks in a second. Then, we can find the vertical and horizontal components of her movement.
- Line $\overline{A B}$ has length 4 feet.
- Line $\overline{A C}$ has length $5 x$ feet.
- Line $\overline{B C}$ has length $4 x$ feet.

By the Pythagorean Theorem, $25 x^{2}+16 x^{2}=16 \rightarrow 41 x^{2}=16 \rightarrow x=\frac{4}{\sqrt{41}}$. Thus, at every second, Margot moves West $\frac{20}{\sqrt{41}}$ feet and North $\frac{16}{\sqrt{41}}$ feet. Since she begins at location (30, 0), her location at time t (in seconds) becomes approximately $(30-3.1235 t, 2.4988 t)$.
4.13b Problem: Write an expression for the distance from Margot's position to the statue at time t.
4.13b Solution: We know Margot's location at time t to be $(30-3.1235 t, 2.4988 t)$. Because the statue is centered at location $(0,0)$, her distance from the statue at time t by the distance formula is $\sqrt{(30-3.1235 t)^{2}+(2.4988 t)^{2}}$. Simplifying yields (about) $\sqrt{16 t^{2}-187.41 t+900}$.
4.13c Problem: Find the times when Margot is 28 feet from the statue.
4.13c Solution: Using our derived formula, $\sqrt{16 t^{2}-187.41 t+900}$, we can solve for the times t in which Margot is 28 feet away from the statue.

$$
\begin{aligned}
\sqrt{16 t^{2}-187.41 t+900} & =28 \\
16 t^{2}-187.41 t+900 & =784 \\
16 t^{2}-187.41 t+116 & =0 \\
t & =\frac{187.41 \pm \sqrt{(-187.41)^{2}-4(16)(116)}}{2(16)} \\
t & =\frac{187.41 \pm \sqrt{27698.5081}}{32}
\end{aligned}
$$

Thus, there are two times for which Margot is 28 feet away from the status: $t \approx 11.057$ and $t \approx 0.656$.

