## Collingwood 14

Andre Ye

22 October 2020
4.3a Problem: What is the area of the triangle determined by the lines $y=-\frac{1}{2} x+5, y=6 x$, and the $y$-axis?
4.3a Solution: We can find the points of intersection, then use the shoelace algorithm to find the area. Because one of the three lines is the $y$-axis, the other two lines have unique intersection points where $x=0$.

$$
\begin{aligned}
& y=-\frac{1}{2} x+5 \\
& y=-\frac{1}{2} 0+5 \\
& y=5
\end{aligned}
$$

Thus, the intersection point for one of the lines is $(0,5)$.

$$
\begin{aligned}
& y=6 x \\
& y=0
\end{aligned}
$$

Thus, the intersection point for one of the lines is $(0,0)$. Another intersection point lies between the two non- $y$-axis lines:

$$
\begin{aligned}
-\frac{1}{2} x+5 & =6 x \\
-\frac{13}{2} x & =-5 \\
x & =-5\left(-\frac{2}{13}\right) \\
x & =\frac{10}{13} \\
y=6 x & =\frac{60}{13}
\end{aligned}
$$

Thus, the intersection is $\left(\frac{10}{13}, \frac{60}{13}\right)$. Writing out these points in shoelace format:

| 0 | 5 |
| :---: | :---: |
| 0 | 0 |
| $\frac{10}{13}$ | $\frac{60}{13}$ |
| 0 | 5 |

Cross-multiplying from top-right to bottom-left yields $\frac{50}{13}$. Cross-multiplying from top-left to bottom-right yields 0 . Averaging the two yields $\frac{25}{13}$. Hence, the area is $\frac{25}{13}$ square units.
4.3b Problem: If $b>0$ and $m<0$, then the line $y=m x+b$ cuts off a triangle from the first quadrant. Express the area of that triangle in terms of $m$ and $b$.
4.3b Solution: The one point given is $(0, b)$, or the $y$-intercept. Given this point, we can find a point where $y$ equals 0 , the $x$-intercept.

$$
\begin{aligned}
y & =m x+b \\
0 & =m x+b \\
m x & =-b \\
x & =-\frac{b}{m}
\end{aligned}
$$

Thus, the $x$-intercept is located at $\left(-\frac{b}{m}, 0\right)$. The distance between these intercepts and the origin $(0,0$ form the two legs of a right triangle. Since the $y$-intercept is $(0, b)$, the vertical leg has length $b$. Since the $x$-intercept is $\left(-\frac{b}{m}, 0\right)$, the horizontal leg has length $-\frac{b}{m}$. Using the area for triangle area:

$$
\begin{aligned}
\text { Area of Triangle } & =\frac{\text { Width } \cdot \text { Height }}{2} \\
& =\frac{-\frac{b}{m} \cdot b}{2} \\
& =\frac{-\frac{b^{2}}{m}}{2} \\
& =\frac{-b^{2}}{2 m}
\end{aligned}
$$

Thus, the area of such a triangle is given by $\frac{-b^{2}}{2 m}$ square units.
4.3c Problem: The lines $y=m x+5, y=x$ and the $y$-axis form a triangle in the first quadrant. Suppose this triangle has an area of 10 square units. Find $m$.
4.3c Solution: The two fixed lines are $y=x$ and $x=0$ (the $y$-axis). Their point of intersection is $(0,0)$ (the origin). Each line has one point of intersection with $y=m x+5$, which we can express in terms of $m$.

$$
\begin{aligned}
x & =m x+5 \\
x-m x & =5 \\
(1-m) x & =5 \\
x & =\frac{5}{1-m}
\end{aligned}
$$

Thus, one intersection point is $\left(\frac{5}{1-m}, \frac{5}{1-m}\right)$. The other intersection point between $y=m x+5$ and the $y$-axis is simply the $y$-intercept, which remains 5 regardless of the value of $m$. Thus, the three intersections are $(0,0),\left(\frac{5}{1-m}, \frac{5}{1-m}\right)$, and $(0,5)$. Writing these terms in shoelace format:

| 0 | 0 |
| :---: | :---: |
| $\frac{5}{1-m}$ | $\frac{5}{1-m}$ |
| 0 | 5 |
| 0 | 0 |

Cross-multiplying from top left to bottom right yields $\frac{25}{1-m}$. Cross-multiplying from top right to bottom left yields 0 . Averaging the two yields $\frac{25}{2-2 m}$. This is the area of the triangle given, in terms of $m$.

To find the value of $m$ such that the area equals 10 , we can set up an equation:

$$
\begin{aligned}
\frac{25}{2-2 m} & =10 \\
\frac{5}{2} & =2-2 m \\
2 m & =-\frac{1}{2} \\
m & =-\frac{1}{4}
\end{aligned}
$$

Thus, $m=-\frac{1}{4}$.
4.5 Context: Problem 4.5. The (average) sale price for single family property in Seattle and Port Townsend is tabulated below:

| Year | Seattle | Port Townsend |
| :---: | :---: | :---: |
| 1970 | $\$ 38,000$ | $\$ 8400$ |
| 1990 | $\$ 175,000$ | $\$ 168,400$ |

4.5a Problem: Find a linear model relating the year $x$ and the sales price $y$ for a single family property in Seattle.
4.5a Solution: Two points given are $(1970,38000)$ and $(1990,175000)$ for average sale price for single family property in Seattle. The slope is $\frac{175000-38000}{1990-1970}=\frac{137000}{20}=6850$. Writing in point-slope form:

$$
\begin{aligned}
y-38000 & =6850(x-1970) \\
y & =6850(x-1970)+38000
\end{aligned}
$$

Thus, the equation is $y=6850(x-1970)+38000$.
4.5b Problem: Find a linear model relating the year $x$ and the sales price $y$ for a single family property in Port Townsend.
4.5b Solution: The two points given are $(1970,8400)$ and $(1990,168400)$. The slope is $\frac{168400-8400}{1990-1970}=$ $\frac{160000}{20}=8000$. Writing in point-slope form:

$$
\begin{aligned}
y-8400 & =8000(x-1970) \\
y & =8000(x-1970)+8400
\end{aligned}
$$

Thus, the equation is $y=8000(x-1970)+8400$.
4.5c Problem: Sketch the graph of both modeling equations in a common coordinate system; restrict your attention to $x \geq 1970$.
4.5c Solution: Red line for Port Townsend, blue line for Seattle.

4.5d Problem: What is the sales price in Seattle and Port Townsend in 1983 and 1998?
4.5d Solution: This is simply a series of calculations, using our derived models. Let $p_{s}(x)$ be the price of a house in Seattle given year $x$, and let $p_{t}(x)$ be the price of a house in Port Townsend given year $x$.

$$
\begin{aligned}
\text { Price in } 1983 \text { of Seattle } \rightarrow p_{s}(1983) & =6850(1983-1970)+38000=\$ 127050 \\
\text { Price in } 1983 \text { of Port Townsend } \rightarrow p_{t}(1983) & =8000(1983-1970)+8400=\$ 112400 \\
\text { Price in } 1998 \text { of Seattle } \rightarrow p_{s}(1998) & =6850(1998-1970)+38000=\$ 229800 \\
\text { Price in } 1998 \text { of Port Townsend } \rightarrow p_{t}(1998) & =8000(1998-1970)+8400=\$ 232400
\end{aligned}
$$

Tabulating answers:

| Year | Price in Seattle | Price in Port Townsend |
| :---: | :---: | :---: |
| 1983 | $\$ 127,050$ | $\$ 112,400$ |
| 1998 | $\$ 229,800$ | $\$ 232,400$ |

4.5e Problem: When will the average sales price in Seattle and Port Townsend be equal and what is this price?
4.5e Solution: To solve this problem, we need to find a year $x$ such that $p_{s}(x)=p_{t}(x)$.

$$
\begin{aligned}
6,850(x-1,970)+38,000 & =8,000(x-1,970)+8,400 \\
6850 x-13,456,500 & =8000 x-15,751,600 \\
68.5 x-134,565 & =80 x-157,516 \\
11.5 x & =22,951 \\
x & \approx 1995.7391
\end{aligned}
$$

Finding the value at year 1995.7391:

$$
\begin{aligned}
p_{s}(1995.7391)=p_{t}(1995.7391) & =8,000(1995.7391-1,970)+8,400 \\
& =214312.8
\end{aligned}
$$

Thus, at year 1995.7391 and price $\$ 214,313$, the prices for Port Townsend and Seattle are the same.
4.5f Problem: When will the average sales price in Port Townsend be $\$ 15,000$ less than the Seattle sales price? What are the two sales prices at this time?
4.5f Solution: This question asks for a year $x$ such that $p_{t}(x)+15,000=p_{s}(x)$.

$$
\begin{aligned}
8,000(x-1,970)+8,400+15,000 & =6,850(x-1,970)+38,000 \\
8,000 x-15,736,600 & =6850 x-13,456,500 \\
1,150 x & =2,280,100 \\
x & \approx 1982.6957
\end{aligned}
$$

Finding the two values:

$$
\begin{aligned}
p_{s}(1982.6957) & =6,850(1982.6957-1,970)+38,000 \\
& =124,965.545 \\
p_{t}(1982.6957) & =8,000(1982.6957-1,970)+8,400) \\
& =109,965.6
\end{aligned}
$$

Thus, at year 1982.7, Seattle price at $\$ 124,965$ and Port Townsend price at $\$ 109,966$ the Seattle price is $\$ 15,000$ larger than that of Port Townsend's.
4.5 g Problem: When will the Port Townsend sales price be $\$ 15,000$ more than the Seattle sales price? What are the two sales prices at this time?
4.5 g Solution: This question asks for a year $x$ such that $p_{t}(x)=p_{s}(x)+15,000$.

$$
\begin{aligned}
8,000(x-1,970)+8,400 & =6,850(x-1,970)+38,000+15,000 \\
8,000 x-15,751,600 & =6,850 x-13,441,500 \\
1,150 x & =2,310,100 \\
x & \approx 2008.7826
\end{aligned}
$$

Finding the two values:

$$
\begin{aligned}
p_{s}(1982.6957) & =6,850(2008.7826-1,970)+38,000 \\
& =303,660.81 \\
p_{t}(1982.6957) & =8,000(2008.7826-1,970)+8,400) \\
& =318,660.8
\end{aligned}
$$

Thus, at year 2008.78, Seattle price at $\$ 303,660.81$ and Port Townsend price at $\$ 318,660.8$ the Seattle price is $\$ 15,000$ larger than that of Port Townsend's.
4.5h Problem: When will the Seattle sales price be double the Port Townsend sales price?
4.5h Solution: This question asks for a year $x$ such that $2 \cdot p_{t}(x)=p_{s}(x)$.

$$
\begin{aligned}
2(8,000(x-1,970)+8,400) & =6,850(x-1,970)+38,000 \\
16,000 x-31,503,200 & =6,850 x-13,456,500 \\
9150 x & =18,046,700 \\
x & \approx 1972.3169
\end{aligned}
$$

Finding the two values:

$$
\begin{aligned}
p_{s}(1972.3169) & =6,850(1972.3169-1,970)+38,000 \\
& =53,870.765 \\
p_{t}(1972.3169) & =8,000(1972.3169-1,970)+8,400) \\
& =26,935.2
\end{aligned}
$$

Thus, at year 1972.32, Seattle price at $\$ 53,870.765$ and Port Townsend price at $\$ 26,935.2$ the Seattle price is $\$ 15,000$ larger than that of Port Townsend's. These numbers are a little bit off because the textbook plugs in the approximation for the date, 1972.32, instead of a more accurate four-decimal space representation.
4.5i Problem: Is the Port Townsend sales price ever double the Seattle sales price?
4.5h Solution: This question asks for a year $x$ such that $p_{t}(x)=2 \cdot p_{s}(x)$.

$$
\begin{aligned}
8,000(x-1,970)+8,400 & =2(6,850(x-1,970)+38,000) \\
8,000 x-15,751,600 & =13,700 x-26,913,000 \\
11,161,400 & =5700 x \\
x & \approx 1958.1404
\end{aligned}
$$

Plugging this derived year into one of the equations for verification, we find that $p_{t}(1958.1404)=$ $8,000(1958.1404-1,970)+8,400=-86476.8$. Since the price of a house cannot be negative (unless you have very undesirable land and very generous sellers), the Port Townsend price is never double the Seattle price.

