Collingwood 13

Andre Ye

21 October 2020
4.1 Context: This exercise emphasizes the "mechanical aspects" of working with linear equations. Find the equation of a line:
4.1a Problem: Passing through the points $(1,-1)$ and $(-2,4)$.
4.1a Solution: The slope of a line that passes through $(1,-1)$ and $(-2,4)$ is $\frac{5}{-3}=-\frac{5}{3}$. Solving for the y-intercept:

$$
\begin{aligned}
y & =-\frac{5}{3} x+b \\
-1 & =-\frac{5}{3}(1)+b \\
\frac{2}{3} & =b
\end{aligned}
$$

Thus, the equation for the line is $y=-\frac{5}{3} x+\frac{2}{3}$.
4.1b Problem: Passing through the point $(-1,-2)$ with slope $m=40$.
4.1b Solution: An line with a slope of 40 can be represented with $y=40 x+b$. Deriving b :

$$
\begin{aligned}
y & =40 x+b \\
-2 & =-40+b \\
38 & =b
\end{aligned}
$$

Thus, the equation for the line is $y=40 x+38$.
4.1c Problem: With y-intercept $b=-2$ and slope $m=-2$.
4.1c Solution: This line can be represented with $y=-2 x-2$.
4.1d Problem: Passing through the point $(4,11)$ and having slope $m=0$.
4.1d Solution: If a line has a slope of zero, then it is simply a horizontal line that satisfies $y=c$, where c is some constant. Since the line passes through the point $(4,11)$, which has a y-value of 11 , the line is $y=11$.
4.1e Problem: Perpendicular to the line in (a) and passing through (1,1).
4.1e Solution: The line in problem (a) has a slope of $-\frac{5}{3}$. Since the slope of a line perpendicular to another line of slope m is $-\frac{1}{m}$, or the negative reciprocal, the slope of a line perpendicular to the one in problem (a) has a slope of $\frac{3}{5}$. Thus, it can be represented with equation $y=\frac{3}{5} x+b$. Finding the appropriate
value for b :

$$
\begin{aligned}
y & =\frac{3}{5}+b \\
1 & =\frac{3}{5}+b \\
\frac{2}{5} & =b
\end{aligned}
$$

Thus, the equation of the line is $y=\frac{3}{5} x+\frac{2}{5}$.
4.1f Problem: Parallel to the line in (b) and having y-intercept $b=-14$.
4.1f Solution: Lines that are parallel have the same slope. Thus, this line has a slope of 40 . Since the y-intercept is given, the equation is $y=40 x-14$.
4.1g Problem: Having the equation $3 x+4 y=7$.
4.1g Solution: Making algebraic manipulations, we can derive slope-intercept form.

$$
\begin{aligned}
3 x+4 y & =7 \\
4 y & =-3 x+7 \\
y & =-\frac{3}{4}+\frac{7}{4}
\end{aligned}
$$

Thus, the equation is $y=-\frac{3}{4}+\frac{7}{4}$.
4.1h Problem: Crossing the x-axis at $x=1$ and having slope $m=1$.
4.1h Solution: If a line crosses the x-axis at $x=1$, then it crosses the point $(1,0)$. Since the line has a slope of 1 , it can be written as $y=x+b$. Deriving b :

$$
\begin{aligned}
y & =x+b \\
0 & =1+b \\
-1 & =b
\end{aligned}
$$

Thus, the equation of the line is $y=x-1$.
4.2 Context: Sketch an accurate picture of the line having equation $y=2-\frac{1}{2} x$. Let α be an unknown constant.

4.2a Problem: Find the point of intersection between the line you have graphed and the line $y=1+\alpha x$; your answer will be a point in the $x y$ plane whose coordinates involve the unknown α.
4.2a Solution: If the two lines are equal to each other, they must have the same y-coordinate. Setting them equal to each other yields the value of x in terms of α :

$$
\begin{aligned}
2-\frac{1}{2} x & =1+\alpha x \\
\left(-\frac{1}{2}-\alpha\right) x & =-1 \\
x & =\frac{-1}{-\frac{1}{2}-\alpha} \\
x & =\frac{2}{1+2 \alpha}
\end{aligned}
$$

Plugging this value into the simpler of the two equations:

$$
\begin{aligned}
& y=1+\alpha x \\
& y=1+\alpha\left(\frac{2}{1+2 \alpha}\right) \\
& y=1+\frac{2 \alpha}{1+2 \alpha} \\
& y=\frac{1+2 \alpha}{1+2 \alpha}+\frac{2 \alpha}{1+2 \alpha} \\
& y=\frac{1+4 \alpha}{1+2 \alpha}
\end{aligned}
$$

Therefore, the point of intersection is $\left(\frac{2}{1+2 \alpha}, \frac{1+4 \alpha}{1+2 \alpha}\right)$.
4.1b Problem: Find α so that the intersection point in (a) has x-coordinate 10.
4.1b Solution: In order for the intersection to have an x value of 10 , when we set up the equation to find the point of intersection, as in the previous problem $2-\frac{1}{2} x=1+\alpha x$, we plug in the known value of x, which is 10 . Thus, we can fill in variables to find the value of α :

$$
\begin{aligned}
2-\frac{1}{2} x & =1+\alpha x \\
2-\frac{1}{2}(10) & =1+\alpha(10) \\
-4 & =10 \alpha \\
\alpha & =-\frac{2}{5}
\end{aligned}
$$

Therefore, $\alpha=-\frac{2}{5}$.
4.1c Problem: Find α so that the intersection point in (a) lies on the x-axis.
4.1c Solution: If the intersection point lies on the x-axis, then y must equal 0 . Let us rewrite both equations:

$$
\begin{aligned}
y & =2-\frac{1}{2} x \\
2 y & =4-x \\
x & =-2 y+4
\end{aligned}
$$

$$
\begin{aligned}
y & =1+\alpha x \\
\alpha x & =y-1 \\
x & =\frac{y}{\alpha}-\frac{1}{\alpha}
\end{aligned}
$$

Since the x values must be equal in an intersection point, we can set the two equations each to each other:

$$
\begin{aligned}
-2 y+4 & =\frac{y}{\alpha}-\frac{1}{\alpha} \\
-2(0)+4 & =\frac{0}{\alpha}-\frac{1}{\alpha} \\
4 & =-\frac{1}{\alpha} \\
4 \alpha & =-1 \\
\alpha & =-\frac{1}{4}
\end{aligned}
$$

Thus, $\alpha=-\frac{1}{4}$.

