Collingwood 12

Andre Ye

10 October 2020

3.8a Problem: Solve for x: $\frac{x^2-2x+1}{x+5} = x - 2$. **3.8a Solution:**

$$\frac{x^2 - 2x + 1}{x + 5} = x - 2$$

$$x^2 - 2x + 1 = (x - 2)(x + 5)$$

$$x^2 - 2x + 1 = x^2 + 3x - 10$$

$$-5x = -11$$

$$x = \frac{11}{5}$$

Therefore, $x = \frac{11}{5}$.

3.8b Problem: Solve for *x*: $\frac{x-3}{x+2} = 1$. **3.8b Solution:**

$$\frac{x-3}{x+2} = 1$$
$$x-3 = x-2$$
$$-3 = 2$$

Because $-3 \neq 2$, the derived equation is a contradiction and hence there are no solutions

3.8c Problem: If x = -2, find ALL solutions of the equation $(x + 1)^2 + (y - 1)^2 = 10$. **3.8c Solution:**

$$(x+1)^{2} + (y-1)^{2} = 10$$

$$(-2+1)^{2} + (y-1)^{2} = 10$$

$$(y-1)^{2} = 9$$

$$y-1 = \pm 3$$

$$y = \pm 3 + 1$$

Thus, solutions are (-2, -2) and (-2, 4).

3.8d Problem: If y = 3, find ALL solutions of the equation $5(x+1)^2 + 2(y-1)^2 = 10$.

3.8d Solution:

$$5(x+1)^2 + 2(y-1)^2 = 10$$

$$5(x+1)^2 + 2(2)^2 = 10$$

$$5(x+1)^2 = 2$$

$$(x+1)^2 = \frac{2}{5}$$

$$x+1 = \pm \sqrt{\frac{2}{5}}$$

$$x = \frac{\pm \sqrt{10}}{5} - 1$$

Therefore, solutions are $\boxed{(\frac{\sqrt{10}}{5} - 1, 3)}$ and $(\frac{-\sqrt{10}}{5} - 1, 3)$.