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1 Introduction

Continued fractions are a method of describing non-integer numbers in a far more natural and elegant way
than, say, the arbitrary base-10 decimal expansion conventionally used. This is because while base-10 (or
any base) uses an arbitrary value of ten or the like, a continued fraction’s expression is functionally identical
over any base. For example, let us consider the example of 355

113 . The decimal expansion of this fraction is

3.1415929203539823008849557522123893...

and repeats with period 112. Now, the continued fraction representation,

3 +
1

7 + 1
16

,

looks far more elegant and simple than the rather unruly decimal expansion. Irrational numbers may
expressed as infinite continued fractions, of the form,

a0 +
1

a1 + 1
a2+

1

. . .

.

Our problem will investigate infinite continued fractions where a0 = a1 = a2 . . ., or to put it more concisely,

a+
1

a+ 1
a+ 1

. . .

.

Furthermore, we can represent this as an infinite compounding of functions. Let f be a function such that
f(x) = a+ 1

x , thus our infinite continued fraction can be expressed as f(f(f(f(· · · )))).
We will explore a series of questions, finding that each leads us to new ones, to better understand the

nature of this infinite fraction. As such, these questions may be confusing initially, but these will be further
elaborated upon.

1. What values do this infinite fraction take on? If we express it by iterating f many times, what values
does that repeated iteration converge to?

2. What are the value of the stable and unstable fixed points the infinite fraction converges to, given a?

3. Prove that the stable fixed point of f(x) is the unstable fixed point of f−1(x), and vice versa.

2 Exploration of infinite continued fractions as infinite composi-
tions

We can start by exploring this problem, plugging in a few simple values of a and then looking at our findings.
We start with perhaps the simplest value, a = 0. When we have that a = 0, our fractional representation is

0 +
1

0 + 1
0+ 1

. . .

We can see that at any stoppage point, this is the number 1 divided by itself numerous times, so the
expression is equal to 1. We will explore the complexity of this later, because a = 0 leads to some problematic
and interesting results.
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Figure 2.1: When a = 1, repeated composition of the function converges to φ.

A very interesting result happens when we plug in a = 1; the graph of the first 25 iterations is presented
in Figure 1.

After these 25 iterations, it converges to around 1.618; interestingly, this value reminds one of the golden

ratio, φ = 1+
√
5

2 . When we look at the first few iterations, we see the values of 2
1 ,

3
2 ,

5
3 ,

8
5 ,

13
8 . We see that

each iteration is the ratio of the next two consecutive numbers in the Fibonacci sequence. As n approaches
infinity, fn+1

fn
= φ, so this confirms our suspicions about the golden ratio.

We try another simple value, a = 2. This gives the composition:

2 +
1

2 + 1
2+ 1

. . .

After 25 iterations at a = 2, the value of the composition comes out to 2.4142; we recognize that this is
nearly equivalent to the

√
2 + 1, and indeed it is. So far, both of our initial trials have converged to values

revolving around radicals.

To get some more insight, we try to look at where the continued fraction converges to for values of a that
are very large and very small. We can see that for larger and larger values of a, it converges to a more and
more closely. For example, when a = 10 it converges to 10.09, and when a = 100 it converges to 100.01, very
close to the initial value of a. This makes sense, considering the fact that for large values of a, the fractional
part of

a+
1

a+ 1
a+ 1

. . .

gets smaller and smaller, leaving only the a at the beginning to have significance. The same logic applies
to negative values of a that have a very large absolute value. We now look to values of a that are very small.
The graphs of such a look somewhat like figure 2.

This is the graph when a = 0.01. As we can see, it converges to around the value of 1, which is what
happens when a gets closer and closer to 0, either positive or negative. Informally, we can explain this by
seeing that the initial a value in

a+
1

a+ 1
a+ 1

. . .
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Figure 2.2: When a = 0.01, repeated composition of the function converges to 1.

It is negligible as a goes to 0, and the denominator of the fractional part goes to around 1, yielding the
convergence of 1.

The following sections will explain these interesting observations.

3 Solving for convergence values

3.1 Solving for and explaining f(x) convergence

Let

x = a+
1

a+ 1
a+ 1

. . .

,

where x is the convergence value. This gives

x = a+
1

x
=⇒ x2 − ax− 1 = 0 =⇒ x =

a±
√
a2 + 4

2
.

An interesting (but unrelated to broader conversation) observation is that the sum of the two possible

convergence values is a. The formula for the convergence values was found to be
a±
√
a2 + 4

2
. Adding these

two solutions yields
a+
√
a2 + 4

2
+
a−
√
a2 + 4

2
=

2a

2
= a

What is puzzling about this result is that there are in fact two solutions to convergence (given by the
± in the formula for convergence value), even though through simulations and intuition it would seem that
there would only be one.

In the computer simulation, there is a starting value, s; the function f(x) = a + 1
a is iterated upon it

such that f∞(s) serves as being approximately equivalent to the infinite fraction a + 1
a+ 1

a+...

. (Note in the

context of computed simulation, ‘∞’ really means ‘a large number such that convergence appears to have
been reached’.) Thus, the value of s - the initial starting value - is generally irrelevant as it becomes ‘lost
in the cascade of infinite fractions’, which converges to a value dependent on a. However, in our simulation
we found two values of s for which the iteration does not converge to the ‘general’ convergence solution cg:
s = −a and s = cs (the ‘singular’ convergence solution).
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In the first instance, it is obvious that an initial value s that is equal to −a causes division-by-zero errors.

On the second instance, cg and cs are both solutions to the previously derived a±
√
a2+4
2 . However, cs has a

property such that f(cs) = cs, and repeated iteration of the function does not change its value - this does
make it a ‘fixed point’ and a mathematically valid solution for convergence. On the other hand, cg has the
property such that f∞(k) = cg{k ∈ R|k /∈ cs,−a}. More formal language and constructions around ‘general’
and ‘singular’ solutions will be discussed later.

Importantly, we observe from simulations that the inverse function, f−1 is such that it shares the same
solutions for convergence as f , but that f ’s general solutions are the singular solutions of f−1, and f−1’s
singular solutions are the general solutions of f .

3.2 Solving for f−1(x) convergence

Solving for the inverse of f(x) = a+ 1
x gives that f−1(x) = 1

x−a . Compounding f−1(x) infinitely, and setting
this equal to a convergence value x gives

x =
1

−a+ 1
−a+ 1

. . .

.

This leads to

x =
1

x− a =⇒ x2 − ax− 1 = 0 =⇒ x =
a±
√
a2 + 4

2
.

This is the same formula as for convergence values of f . This leads one to hypothesize that, given the same
value of a, f and f−1 take different signs from the ± in the formula in their cg and cs solutions. The next
sections serve to better understand the dynamics of these two solutions, and to prove this hypothesis.

4 Convergence and stability

One can observe that while there are two solutions for convergence, the graph only converges towards one
value. That is, out of the two fixed point solutions, one is ‘stable’ and the other is ‘unstable’; this replaces
earlier language about ‘general’ and ‘singular’ solutions, respectively.

4.1 Theory of stable points

For a function defined iteratively: xn+1 = f(xn) (such as our iterated continued fraction), there may exist
points such that f(x) = x, these are, again, the fixed points. We can further classify fixed points into stable
and unstable fixed points: a stable fixed point is where points “near” the fixed point move toward the point
as the function is iterated. In mathematical terms, x is a fixed point if |f(x+ ∆x)− f(x)| < ∆x, where ∆x
is a nonzero but sufficiently small quantity. Therefore, multiple iterations will bring two points near a fixed
point arbitrarily close together. An unstable point is the opposite: a point where |f(x+ ∆x)− f(x)| > ∆x,
so multiple iterations will push points farther apart.

Reiterating the definition of a stable fixed point, x is stable if |f(x+ ∆x)− f(x)| < ∆x, or

|f(x+ ∆x)− f(x)|
∆x

< 1

(with the less than becoming a greater than for unstable points). As ∆x approaches zero, we obtain

|f(x+ dx)− f(x)|
dx

< 1 =⇒
∣∣∣∣ dfdx

∣∣∣∣ < 1.

This means that if the absolute value of the derivative of f at a fixed point x is less than one, then x is a
stable fixed point.
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4.2 Obtaining conditions for stable fixed point convergence

The derivative of the function f(x) = a+ 1
x can be found as follows:

d

dx

(
a+

1

x

)
=

d

dx
(a) +

d

dx

(
1

x

)
= 0− 1

x2

= − 1

x2

As established, if |f ′(b)| < 1 for some fixed point b of f(x), it is stable. Solving for when the derivative
is less than 1:

∣∣∣∣− 1

b2

∣∣∣∣ < 1

1 < b2

|b| > 1

Thus, for fixed point solutions whose absolute value is larger than 1, the point is stable. Simulations
confirm this result; for instance, in the figure below, a = 0.4. The two solutions for convergence, according
to the formula derived in section 3.1, are ≈ 1.2198 and ≈ −0.8198. Iterating f converges to the former due
to the derivative at that point being less than one, as shown in figure 3.

Figure 4.1: Iteration of f with a = 0.4.

The derivative of the inverse function f−1(x) =
(

1
x−a

)
, which was established to have stable fixed points

where f(x) has unstable fixed points, can be similarly found:

d

dx

(
1

x− a

)
=

d

dx

(
(x− a)

−1
)

= − 1

(x− a)
2

d

dx
(x− a)

= − 1

(x− a)
2
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Solving for when the absolute value of the derivative is less than 1:∣∣∣∣∣− 1

(b− a)
2

∣∣∣∣∣ < 1

1

(b− a)
2 < 1

1 < (b− a)
2

1 < |b− a|
Thus, for fixed point solutions b, such that the absolute value of b−a is larger than 1, the point is stable.

Simulations confirm this result; for instance, in the figure below, a = 0.4. The two solutions for convergence,
according to the formula derived in section 3.2, are ≈ 1.2198 and ≈ −0.8198. Using the 1 < |b−a| condition,
we find:

• For solution b = 1.2198, |b−a| = |1.2198−0.4| = 0.8198. This does not satisfy the condition 1 < 0.8198.

• For solution b = −0.8198, |b− a| = | − 0.8198− 0.4| = 1.2198. This satisfies the condition 1.2198 > 1.

Iterating f−1 confirms that the result converges to the second solution, −0.8198.

Figure 4.2: Iteration of f−1 with a = 0.4.

5 Deriving ±-absent formulae for stable fixed point convergence
value

We have found that the formulas for convergence value, x =
a±
√
a2 + 4

2
, gives two solutions. Furthermore,

we have derived conditions for which a fixed point is stable or unstable. To further advance these findings,
in this section we will find under which conditions to take the ‘+’ or the ‘−’ from this formula such that the
value is the stable fixed point of infinite composition of f .

5.1 For f(x)

Recall that the solutions for the convergence value of the infinite fraction is x =
a±
√
a2 + 4

2
. We derived

in the previous sections that for this to be the stable fixed point of the infinite repeating fraction, it must
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satisfy |x| > 1. Using substitution, this means that the following must be true:∣∣∣∣∣a±
√
a2 + 4

2

∣∣∣∣∣ > 1

Our goal is to understand under which conditions of a should the + or − of the ± in the formula be
used such that it converges to the stable fixed point. We can do this by establishing the truth of various
mathematical statements when a > 0, a < 0, and a = 0 and the + or − is taken.

5.1.1 When a > 0

When a > 0, there are two solutions for convergence:
a+
√
a2 + 4

2
and

a−
√
a2 + 4

2
. This results in two

mathematical statements: ∣∣∣∣∣a+
√
a2 + 4

2

∣∣∣∣∣ > 1 and

∣∣∣∣∣a−
√
a2 + 4

2

∣∣∣∣∣ > 1

The first statement, taking the + from ±, is true. We can prove it as such:∣∣∣∣∣a+
√
a2 + 4

2

∣∣∣∣∣ > 1

∣∣∣a+
√
a2 + 4

∣∣∣ > 2

a+
√
a2 + 4 > 2

We can remove the absolute value around the left-hand side because a > 0 and
√
a2 + 4 is positive; thus the

absolute value is redundant. Furthermore, we see that at a = 0, the expression a+
√
a2 + 4 is equal to two;

since the two terms of the additive expression, a and
√
a2 + 4, increase monotonically, we can assume that

for a > 0, a+
√
a2 + 4 > 2.

The second statement, taking the − from ±, is not true. We can prove it as such:∣∣∣∣∣a−
√
a2 + 4

2

∣∣∣∣∣ > 1

∣∣∣a−√a2 + 4
∣∣∣ > 2

Absolute value allows us to change the order of the two terms in the LHS:∣∣∣√a2 + 4− a
∣∣∣ > 2

For values a ≥ 0, one can reason that
√
a2 + 4 will always be larger than a. By squaring a number, adding

some number to it, and square-rooting it, that number will become larger. Furthermore, one can reason that
as a gets larger, the difference between

√
a2 + 4 and a grows smaller; the significance of adding a constant,

4, becomes less important relative to the size of a. Thus, it can be concluded that
√
a2 + 4−a grows smaller

as a increases.
For a more formal proof of this assertion, it is true that

d

da

(√
a2 + 4− a

)
=

d

da

(√
a2 + 4

)
− d

da
(x) =

a√
a2 + 4

− 1.

This derivative is negative for any value of a, since a√
a2+4

can never be larger than 1. Hence,
√
a2 + 4−a

monotonically decreases as a is larger.
At a = 0, the expression evaluates to 2. Given that the expression decreases for any larger value of a

(such that a > 0), the expression will never be larger than 2 given the domain restriction.
Thus, when a > 0, taking the ‘+’ from ± gives the stable fixed point.
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5.1.2 When a < 0

We need to see the truth of the inequalities∣∣∣∣∣a+
√
a2 + 4

2

∣∣∣∣∣ > 1 and

∣∣∣∣∣a−
√
a2 + 4

2

∣∣∣∣∣ > 1

when a < 0. To make things simpler, we establish a variable b such that b = −a. Since a < 0, we know
that b > 0. We start off with the − here. We therefore have to evaluate the truth of∣∣∣∣∣−b−

√
b2 + 4

2

∣∣∣∣∣ > 1 =⇒
∣∣∣−b−√b2 + 4

∣∣∣ > 2

Immediately, we recognize that −b−
√
b2 + 4 must be negative, because both −b and −

√
b2 + 4 are both

negative. Therefore, for this inequality to be true, we must have that −b −
√
b2 + 4 < −2 for the absolute

value. We know that −b < 0. Additionally, we know that
√
b2 + 4 > 2 when b > 0 from reasoning provided

in the last subsection, so −
√
b2 + 4 < −2. Therefore, we have that −b−

√
b2 + 4 < −2 is true and thus that

the inequality

∣∣∣∣∣a−
√
a2 + 4

2

∣∣∣∣∣ > 1 is true.

Taking the +, we are presented that∣∣∣∣∣a+
√
a2 + 4

2

∣∣∣∣∣ > 1 =⇒
∣∣∣∣∣−b+

√
b2 + 4

2

∣∣∣∣∣ > 1 =⇒
∣∣∣√b2 + 4− b

∣∣∣ > 2

The previous subsection establishes that for a > 0, the inequality∣∣∣√a2 + 4− a
∣∣∣ > 2

is false. Therefore, when b > 0 ∣∣∣√b2 + 4− b
∣∣∣ > 2

is also false, which means that taking the + does not work. Therefore, when a < 0, only the − from the
± yields the stable fixed point.

5.2 For f−1(x)

We determined that the solutions for the convergence value of the infinite fraction is x =
a±
√
a2 + 4

2
. In

order for a value of x to be a stable fixed point, we found that it must satisfy |x− a| > 1. Substituting gives
us ∣∣∣∣∣a±

√
a2 + 4

2
− a
∣∣∣∣∣ > 1.

We can simplify the left side of the inequality to give us∣∣−a±√a2 + 4
∣∣

|2| > 1 =⇒
∣∣∣−a±√a2 + 4

∣∣∣ > 2.

Our goal is to understand under which conditions of a should the + or − of the ± in the formula be used such
that it converges to the stable fixed point. We can do this by establishing the truth of various mathematical
statements when a > 0, a < 0, and a = 0 and the + or − is taken.
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5.2.1 When a > 0

For a > 0, setting the ± as + yields the inequality∣∣∣−a+
√
a2 + 4

∣∣∣ > 2,

which we have previously established to be false for positive a.
However, setting the ± as − yields the inequality∣∣∣−a−√a2 + 4

∣∣∣ > 2.

Immediately, we recognize that −a −
√
a2 + 4 must be negative, because both −a and −

√
a2 + 4 are both

negative. Therefore, for this inequality to be true, we must have that −a−
√
a2 + 4 < −2, in order for it to

satisfy the absolute value requirement. Earlier, we established that

−a−
√
a2 + 4 < −2

is a true statement for a > 0.

Therefore, for a > 0, taking ± =⇒ − in
−a±

√
a2 + 4

2
gives the stable fixed point of f−1.

5.2.2 When a < 0

For a < 0, setting the ± as − yields the inequality∣∣∣−a−√a2 + 4
∣∣∣ > 2.

Setting b = −a, such that b > 0, and substituting gives us∣∣∣b−√b2 + 4
∣∣∣ > 2.

We have previously established that this statement is false for b > 0, and therefore, taking the − from the
± yields a contradiction.

However, taking the + from the ± gives∣∣∣−a+
√
a2 + 4

∣∣∣ > 2.

Substitution for b = −a, such that b > 0 gives∣∣∣b+
√
b2 + 4

∣∣∣ > 2.

We have previously shown this inequality is true for b > 0.

Therefore, for a < 0, taking ± =⇒ + in
−a±

√
a2 + 4

2
gives the stable fixed point of f−1.

5.3 Conclusion

For f(x), we see that the stable fixed point happens when we take the + for a > 0 and the − for a < 0.
For f−1(x), we see that the stable fixed point arises from the − for a > 0 and the + when a < 0 yields the
stable fixed point. We have thus managed to make the convergence formulas ±-absent.

Furthermore, we have also proven that for the same value of a, convergence for infinite applications of f
and f−1 take opposite signs of the ±, and therefore the stable fixed point for one is the unstable fixed point
of the other.
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6 Further inquiry

The domain of this problem has many interesting directions for further inquiry. “6.4: Generalization to
complex values of a” is the follow-up question for our paper.

6.1 The pattern of convergence for finite composition

In our project, we discussed infinite application of the function f(x), as well as f−1(x). In building simulations
to model the convergence, we ran into some interesting results. For instance, when a = −0.25, the oscillation
pattern appears to be growing larger, as shown in Figure 2. However, after several iterations some value is
reached such that the oscillating pattern diminishes in magnitude and eventually converges. This was of
concern earlier in our exploration, because from a limited number of iterations (10) it seems that for certain
values of a, f∞(x) never converges. It would be interesting to find answers to two aspects of this phenomena:

1. For which values of a does this pattern occur?

2. For what value of fn(x) does the oscillation pattern shift from growing larger to smaller?

Figure 6.1: First 25 iterations when a = − 1
4 .

6.2 fa(x) approximates a as a takes on large values

It seems to be true that as a increases, the continued fraction a+ 1
a+ 1

a+...

seems to give successively better

approximations of a. That is, lima→∞ a+ 1
a+ 1

a+...

− a = 0; or, in Gauss notation,

lim
k→∞

(
K

k
a=1

1
a

a

)
= 1.

For very high values of a, the infinite composition converges to a value almost equal to a, and that the
convergence seems to be closer to a for higher values of it. See the table below for sample values. Another
interesting direction of further inquiry would to find the nature of the difference between the approximation
and ‘real value’, or fa(x)− a.
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a Approximate a+ 1
a+ 1

a+...

Convergence

1 1.618
2 2.414
5 5.193
50 50.019
100 100.009
1000 1000.001

6.3 When a = 0 for ±-absent Convergence Formulas

When solving for the stable fixed point of f(x) for a = 0, we are asked to find whether the inequalities:∣∣∣∣∣a+
√
a2 + 4

2

∣∣∣∣∣ > 1 and

∣∣∣∣∣a−
√
a2 + 4

2

∣∣∣∣∣ > 1

are true. Since we know the value of a, we can plug it into the inequalities. We see that neither inequality
is true for a = 0, as they both yield that 1 > 1, which is not true. Thus, when a = 0 neither + nor − from
the ± yields a stable fixed point.

This strange behavior is also exhibited in f−1(x) for a = 0, leading us to use more computation-based
methods to determine the stable fixed points of f(x) and f−1(x) for a = 0, as demonstrated below. Because
both f(x) and f−1(x) converge to the same point, somehow it must be both a stable and an unstable fixed
point. A direction of further inquiry may be to make sense of these results.

6.3.1 For f(x)

We have that f∞(x) can be written as

a+
1

a+ 1
a+ 1

. . .

.

Setting a = 0 allows us to simplify the following expression to

0 +
1

0 + 1
0+ 1

. . .

=
1
1
1

...

= 1.

Therefore, the stable fixed point of f(x) for a = 0 is 1.

6.3.2 For f−1(x)

We have that f−∞(x) can be written as
1

−a+ 1
−a+ 1

. . .

.

Substituting a = 0 simplifies this expression to

1

0 + 1
0+ 1

. . .

=
1
1
1

...

= 1.

This gives us that the stable fixed value of f−1(x) for a = 0 is 1.
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6.4 Generalization to complex values of a

−2

−1

0

1

2

−4 −3 −2 −1 0 1 2 3 4

Figure 6.2

Arithmetic operations, such as addition and division, apply as soundly to complex numbers as they do to
real numbers. In this follow-up section, we investigate where our earlier findings about convergence value
generalize well to complex numbers.

We begin by finding convergence values for an arbitrary example, a = 1 + i, using the formula found
before, then confirming if they are applicable with visualizations.

Setting a = 1 + i in

x =
a±
√
a2 + 4

2

gives

x =
1 + i±

√
(1 + i)2 + 4

2
=

1 + i±
√

2i+ 4

2
.

We can solve for
√

2i+ 4, by setting it to a+ bi, giving the following system of equations:

a2 − b2 = 4

2abi = 2i

From the second equation, we have that a = 1
b , and substituting into the first equation (using WolframAlpha)

gives us the solution (although there are multiple, it doesn’t matter if we take positive or negative solutions,
because the ± varies the sign anyways) of

(a, b) =

(√
2 +
√

5,

√
−2 +

√
5

)
=⇒

√
2i+ 4 =

√
2 +
√

5 + i

√
−2 +

√
5.

Therefore, the solutions for x are

1 +
√

2 +
√

5

2
+ i

1 +
√
−2 +

√
5

2
and

1−
√

2 +
√

5

2
+ i

1−
√
−2 +

√
5

2

The decimal approximations for these are

1.52908 + 0.74293i and − 0.52908 + 0.25706i
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These two fixed points are present in the complex plane, as shown below in Figure 6.6. Furthermore, we
observe that one of the convergence solutions is stable, and the other is unstable. This is demonstrated by
Figure 6.7, which visualizes the position of points over iterations converging to the stable fixed point.

−2

−1

0

1

2

−1 0 1 2

Figure 6.3: Resulting vector field for f(x) when a =
1 + i. We observe two fixed points, one at −0.53 +
0.26i and the other at 1.53 + 0.74i. Erratic behavior
occurs around the origin due to division by zero.

−2

−1

0

1

2

−1 0 1 2

Figure 6.4: Iterating f from starting values of
−0.4+0.2i and−0.2+0.3i, we observe that they both
converge to the fixed point on the right — which is
the stable fixed point of the two.

For another example, consider a = 3
4 − 2

3 i.
Plugging 3

4 − 2
3 i into the formula, we get

3
4 − 2

3 i±
√(

3
4 − 2

3 i
)2

+ 4

2
=

3
4 − 2

3 i±
√

593
144 + i

2

To evaluate the
√

593
144 + i, we set the answer to a+bi, and notice that (a+bi)2 = a2−b2+2abi. Therefore,

as in the previous part,

a2 − b2 =
593

144

2ab = 1

From the second equation, we have that a = 1
b . Substituting this into the first equation, then solving,

we get that
√

593
144 + i ≈ 2.044 + 0.245i, and therefore that

3
4 − 2

3 i+
√

593
144 + i

2
= 1.397 + 0.456i

3
4 − 2

3 i−
√

593
144 + i

2
= −0.647 + 0.211i

Thus, a = 3
4 − 2

3 i goes to 1.397 + 0.456i and −0.647 + 0.211i. Looking at the graph below, we see that
these two points are indeed the fixed points of the graph. The same behavior with stable and unstable fixed
points has been observed; we have found 1.397 + 0.456i is the stable fixed point. Although this paper does
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not prove it, we hypothesize that like how |b| > 1 (where b was a fixed point) for it to be stable for real
numbers, the magnitude of a complex number must be larger than 1 for it to be stable.

−2

−1

0

1

2

−2 −1 0 1 2

Figure 6.5: Resulting vector field for f(x) when a = 3
4 − 2

3 i

Thus, the formula derived — x = a±
√
a2+4
2 — does work on complex numbers, as confirmed through

visualization and calculation (albeit not rigorously, as complex analysis is currently out of the reach of us).
Further inquiry on this follow-up would prove if our hypothesis relating the stability of complex numbers
with magnitudes larger than 1 was true or not.
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