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The Pitfalls of Modeling 
Structurally Uncertain Tasks



Goal
To build useful models for 

uncertain/ambiguous tasks
(e.g., in medicine)
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Medical segmentation – Overview
● Goal: Identify which pixels correspond to an object of interest
● Used: for diagnostic purposes, e.g. lung cancer risk
● Models: quickly process very high-res data
● Stakes: area/shape can influence diagnosis

Image & annotation from the Lung Image Consortium Dataset (LIDC)



Medical segmentation often features structural 
uncertainty, producing annotation disagreement.
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Uncertainty Example Main Sources Produces

Superficial (find img) Image quality Continuous 
disagreement

Structural Image contents, 
domain 

knowledge

Discrete 
disagreement

Distinguishing superficial and structural uncertainty
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Medical segmentation often features structural 
uncertainty: discrete annot. disagreement

Images & annotations from the Lung Image Consortium Dataset (LIDC)



How to build models in the face of 
structural uncertainty?

Three approaches:
1. ☒ “Averaging out”
2. ☒ Modify the model
3. 🗹 Confidence Contours
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Approach 1: “Average out” the uncertainty

Voting, mean/median consensus, etc.

Works for superficial uncertainty, but 
tricky for structural uncertainty:

● Not necessarily consistent with 
domain knowledge rules

● Lose out on structural info
○ High stakes!
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⚠ Intervention #1
Structural uncertainty isn’t just a 
“problem”, it’s an important signal
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Approach 2: Modify the model

● Continuous Maps: produce “smooth” (not “hard”) segmentations
● Candidate Generation: produce k possible “hard” segmentations
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Example (Continuous Maps): Bayesian Uncertainty

Model w/
Dropout
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Example (Candidate Generation): Probabilistic U-Net

Kohl, “A Probabilistic U-Net for Segmentation of Ambiguous Images”



⚠ Intervention #2
What properties do we want for 

uncertainty representations?
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Desirable properties of uncertainty rep’s

Human-friendly. Humans both…
● …provide uncertainty information, and
● …need to use uncertainty representations.

Providing –
1. Convenient to annotate. Should be low-effort & natural

Using –
2. Informative. Rep’s provide enough info to do the job
3. Concise. Rep’s do not have info overload
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Example (Continuous Maps): Bayesian Uncertainty

Model w/
Dropout

Convenient to annotate? ✅Annotate “as normal”

Informative and Concise? 🤔
● Is the model bad or is the data hard?
● What thresholds do I use?
● How do I make a judgement?



Approach 2: Modify the model

● Continuous Maps: produce “smooth” (not “hard”) segmentations
● Candidate Generation: produce k possible “hard” segmentations

16

Example (Candidate Generation): Probabilistic U-Net

Kohl, “A Probabilistic U-Net for Segmentation of Ambiguous Images”



Approach 2: Modify the model
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Example (Continuous Maps): Probabilistic U-Net

Kohl, “A Probabilistic U-Net for Segmentation of Ambiguous Images”

Convenient to annotate? ✅Annotate “as normal”

Informative and Concise? 🤔
● Contingent on sampling strategy?
● What does variation mean?
● How many candidates to consider?
● How do I make a judgement?



Model-centric approaches 
disconnect uncertainty from 

human judgement.
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Designing Human-Connected 
Uncertainty Representations



⚠ Intervention #3
If we’re stuck, let’s reapproach the 
ground truth instead of building a 

fancier model
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Our approach: Confidence Contours
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Step 1

Draw min

Step 2

Draw max

Represent the “bounds” of structural uncertainty
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Standard Model

Training models on Confidence Contours requires 
no model modifications.
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Confidence Contours recenters the humans at both sides of 
the uncertainty modeling pipeline.

Standard ModelHuman 
Annotators

Human 
Interpreters

Annotation Training Prediction
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Human annotators directly mark uncertainty in the image with 
minimally more effort.

Standard ModelHuman 
Annotators

Human 
Interpreters

Annotation Training Prediction
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Models are simply trained by predicting two rather than one 
segmentation maps; no bells & whistles needed

Standard ModelHuman 
Annotators

Human 
Interpreters

Annotation Training Prediction
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All uncertainty information directly corresponds to human 
annotations. No black-box uncertainty inferences!

Standard ModelHuman 
Annotators

Human 
Interpreters

Annotation Training Prediction
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Evaluating Confidence 
Contours



Experiments

Annotation
● 45 annotators, 600 images, 2 datasets (LIDC, FoggyBlob)
● 3 CC and 3 singular annotations for each image

Modelling
● Fitted standard, Confidence Contours, and Bayesian models

Interpretation / Use
● Interviewed 5 experts on the utility of model predictions
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CC’s bound ground truth disagreement (and give a little more)
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It’s easier to make substantive conclusions about uncertainty with CCs



#1: Convenient to annotate

Annotators find CCs more demanding (as expected), but not by much
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#2: Informative
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● Annotations correspond to direct 
human judgements

○ …not model abstractions
● CC’s bound the range of disagreement 

30.8% better than avg. singular annot.
● Disagreement is decomposed

○ Min: 13.2% decrease
○ Max: 5.6% decrease

Composited 
singular annot’s

One CC annot.FoggyBlob 
Image



#3: Concise

● CCs are only two discrete masks – easy to read
● “The problem with [continuous maps] if I were looking at it just with 

my eye is that it’s really difficult to tell the certainty level… it would 
be nice to have some range or threshold” [P1]

● “[CC] is easier to understand because I feel like the [min] contour is 
something which is more reliable that you can fall back on, and you 
can use the [max] contour if it makes sense to, given the situation. 
But you don’t get those two channels of information in [continuous 
maps].” [P5]
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Conclusion: Broader Themes

1. Ground truth → “Ground truths”
2. Identifying & centering human needs
3. Data-centrism & model-centrism
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Summary

1. Medical segmentation is a high-stakes & structurally uncertain task.
2. We should model structural uncertainty rather than “collapsing” it.
3. Uncertainty rep’s should be easy to annot., informative, concise

a. Methods which change the model struggle w/ last 2 properties
4. Confidence Contours: bound disagreement w/ min and max contour.

a. Uncertainty is directly annotated, rather than abstractly inferred
b. CCs satisfy all 3 properties
c. Medical experts find CCs more usable in judgements
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ML Bonus: CC annot’s give more positive info
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Thank you!
andreye@uw.edu
andre-ye.github.io



Conclusion: Recapping broader themes

● Prioritizing human users and their perceptual limitations / behavior
● Data-centric over model-centric approach
● Rethinking the ground truth
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